已知数列{an}满足a1=1,a2=12,an-1an+anan+1=2an-1an+1.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设数列{bn}的前n项和为Sn=1-12n,试求数列{bnan}的前n项

题目简介

已知数列{an}满足a1=1,a2=12,an-1an+anan+1=2an-1an+1.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设数列{bn}的前n项和为Sn=1-12n,试求数列{bnan}的前n项

题目详情

已知数列{an}满足a1=1,  a2=
1
2
,  an-1an+anan+1=2an-1an+1

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}的前n项和为Sn=1-
1
2n
,试求数列{
bn
an
}
的前n项和Tn
(Ⅲ)记数列{1-
a2n
}
的前n项积为∏limit
sni=2
(1-
a2i
)
,试证明:
1
2
<∏limit
sni=2
(1-
a2i
)<1
题型:解答题难度:中档来源:不详

答案

(Ⅰ)由an-1an+anan+1=2an-1an+1an(an-1+an+1)=2an-1an+1
an-1+an+1
an-1an+1
=class="stub"2
an

⇒class="stub"1
an+1
+class="stub"1
an-1
=class="stub"2
an
⇒class="stub"1
an+1
-class="stub"1
an
=class="stub"1
an
-class="stub"1
an-1

a1=1且class="stub"1
a2
-class="stub"1
a1
=2-1=1

因此{class="stub"1
an
}
是首项为1,公差为1的等差数列.
从而class="stub"1
an
=1+1×(n-1)=n⇒an=class="stub"1
n

(Ⅱ)当n=1时,b1=S1=1-class="stub"1
2
=class="stub"1
2

当n≥2时,bn=Sn-Sn-1=(1-class="stub"1
2n
)-(1-class="stub"1
2n-1
)=class="stub"1
2n

而b1也符合上式,故bn=class="stub"1
2n
,从而:
bn
an
=class="stub"n
2n

所以Tn=class="stub"1
21
+class="stub"2
22
+class="stub"3
23
+…+class="stub"n
2n
⇒class="stub"1
2
Tn=class="stub"1
22
+class="stub"2
23
+class="stub"3
24
+…+class="stub"n
2n+1

将上面两式相减,可得:class="stub"1
2
Tn=class="stub"1
21
+class="stub"1
22
+class="stub"1
23
+…+class="stub"1
2n
-class="stub"n
2n+1
=
class="stub"1
2
(1-class="stub"1
2n
)
1-class="stub"1
2
-class="stub"n
2n+1
=1-class="stub"1
2n
-class="stub"n
2n+1
Tn=2-class="stub"n+2
2n

(Ⅲ)因为1-
a2n
=1-(class="stub"1
n
)2=(1+class="stub"1
n
)(1-class="stub"1
n
)=class="stub"n+1
n
•class="stub"n-1
n

∏limit
sni=2
(1-
a2i
)=(class="stub"3
2
•class="stub"1
2
)•(class="stub"4
3
•class="stub"2
3
)•(class="stub"5
4
•class="stub"3
4
)•…•(class="stub"n+1
n
•class="stub"n-1
n
)=(class="stub"3
2
•class="stub"4
3
•class="stub"5
4
•…•class="stub"n+1
n
)•(class="stub"1
2
•class="stub"2
3
•class="stub"3
4
•…•class="stub"n-1
n
)
class="stub"n+1
2
•class="stub"1
n
=class="stub"1
2
(1+class="stub"1
n
)

由于n≥2,n∈N*,故0<class="stub"1
n
≤class="stub"1
2
,从而class="stub"1
2
<class="stub"1
2
(1+class="stub"1
n
)≤class="stub"3
4
<1
,即class="stub"1
2
<∏limit
sni=2
(1-
a2i
)<1

更多内容推荐