已知函数f(x)=x+12-x,x∈[3,5],(1)判断函数的单调性,并用定义证明;(2)求函数的最大值和最小值.-数学

题目简介

已知函数f(x)=x+12-x,x∈[3,5],(1)判断函数的单调性,并用定义证明;(2)求函数的最大值和最小值.-数学

题目详情

已知函数f(x)=
x+1
2-x
,x∈[3,5]

(1)判断函数的单调性,并用定义证明;   
(2)求函数的最大值和最小值.
题型:解答题难度:中档来源:不详

答案

(1)f(x)在[3,5]上为增函数.证明如下:…(2分)
设x1,x2是区间[3,5]上的任意两个实数且x1<x2,
f(x1)-f(x2)=
x1+1
2-x1
-
x2+1
2-x2
=
3(x1-x2)
(2-x1)(2-x2)
…(4分)
∵3≤x1<x2≤5∴2-x1<0,2-x2<0 x1-x2<0
∴f(x1)-f(x2)<0  即f(x1)<f(x2)
∴f(x)在[3,5]上为增函数…(8分)
(2)由(1)f(x)在[3,5]上为增函数,
所以f(x)在[3,5]上有最大值f(5)=-2,有最小值f(3)=-4…(12分)

更多内容推荐