设是定义在[-1,1]上的偶函数,的图象与的图象关于直线对称,且当x∈[2,3]时,222233.(1)求的解析式;(2)若在上为增函数,求的取值范围;(3)是否存在正整数,使的图象的最高-高一数学

题目简介

设是定义在[-1,1]上的偶函数,的图象与的图象关于直线对称,且当x∈[2,3]时,222233.(1)求的解析式;(2)若在上为增函数,求的取值范围;(3)是否存在正整数,使的图象的最高-高一数学

题目详情

是定义在[-1,1]上的偶函数,的图象与的图象关于直线对称,且当x∈[ 2,3 ] 时, 222233.(1)求的解析式;(2)若上为增函数,求的取值范围;(3)是否存在正整数,使的图象的最高点落在直线上?若存在,求出的值;若不存在,请说明理由
题型:解答题难度:偏易来源:不详

答案

(Ⅰ)(2)6(3)不存在符合题意的
(1)当x∈[-1,0]时,2-x∈[2,3],f(x)="g(2-x)=" -2ax+4x3;当x∈时,f(x)=f(-x)=2ax-4x3,      ∴………4分
(2)由题设知,>0对x∈恒成立,即2a-12x2>0对x∈恒成立,于是,a>6x2,从而a>(6x2)max=6.………8分
(3)因f(x)为偶函数,故只需研究函数f(x)=2ax-4x3在x∈的最大值.
=2a-12x2=0,得.…10分若,即0<a≤6,则
,故此时不存在符合题意的
>1,即a>6,则上为增函数,于是
令2a-4=12,故a=8.综上,存在a = 8满足题设.

更多内容推荐