(1)已知f(x)=23x-1+m是奇函数,求常数m的值;(2)画出函数y=|3x-1|的图象,并利用图象回答:k为何值时,方程|3X-1|=k无解?有一解?有两解?-数学

题目简介

(1)已知f(x)=23x-1+m是奇函数,求常数m的值;(2)画出函数y=|3x-1|的图象,并利用图象回答:k为何值时,方程|3X-1|=k无解?有一解?有两解?-数学

题目详情

(1)已知f(x)=
2
3x-1
+m
是奇函数,求常数m的值;
(2)画出函数y=|3x-1|的图象,并利用图象回答:k为何值时,方程|3X-1|=k无解?有一解?有两解?
题型:解答题难度:中档来源:不详

答案


360优课网
(1)因为3x-1≠0⇒x≠0.故函数定义域为{x|x≠0}.
因为函数为奇函数,故有f(-1)=-f(1)⇒class="stub"2
3-1-1
+m=-(class="stub"2
31-1
+m)
⇒m=1.
所以所求常数m的值为1;
(2)因为函数的零点即为对应两个函数图象的交点.所以把研究零点个数问题转化为研究图象交点个数.
当k<0时,直线y=k与函数y=|3x-1|的图象无交点,即方程无解;
当k=0或k≥1时,直线y=k与函数y=|3x-1|的图象有唯一的交点,所以方程有一解;
当0<k<1时,直线y=k与函数y=|3x-1|的图象有两个不同交点,所以方程有两解.

更多内容推荐