定义在R上的函数f(x)的图象关于点(-34,0)成中心对称,对任意的实数x都有f(x)=-f(x+32),且f(-1)=1,f(0)=-2,则f(1)+f(2)+f(3)+…+f(2008)+…+f

题目简介

定义在R上的函数f(x)的图象关于点(-34,0)成中心对称,对任意的实数x都有f(x)=-f(x+32),且f(-1)=1,f(0)=-2,则f(1)+f(2)+f(3)+…+f(2008)+…+f

题目详情

定义在R上的函数f(x)的图象关于点(-
3
4
,  0)
成中心对称,对任意的实数x都有f(x)=-f(x+
3
2
)
,且f(-1)=1,f(0)=-2,则f(1)+f(2)+f(3)+…+f(2008)+…+f(2008)的值为(  )
A.-2B.-1C.0D.1
题型:单选题难度:偏易来源:咸安区模拟

答案

由f(x)=-f(x+class="stub"3
2
)得f(x)=f(x+3)即周期为3,
由图象关于点(-class="stub"3
4
,0)成中心对称得f(x)+f(-x-class="stub"3
2
)=0,
从而-f(x+class="stub"3
2
)=-f(-x-class="stub"3
2
),所以f(x)=f(-x).
由f(-1)=1,f(0)=-2,
∴f(1)=f(4)=…=f(2008)=1,
f(2)=f(5)=…=f(2006)=1,
f(3)=f(6)=…=f(2007)=-2,
∴f(1)+f(2)+f(3)+…+f(2008)+…+f(2008)=f(1)=1
故选D

更多内容推荐