已知f(x)是R上的增函数,且f(x)<0,则函数g(x)=x2f(x)的单调情况一定是()A.在(-∞,0)上递增B.在(-∞,0)上递减C.在R上递增D.在R上递减-高二数学

题目简介

已知f(x)是R上的增函数,且f(x)<0,则函数g(x)=x2f(x)的单调情况一定是()A.在(-∞,0)上递增B.在(-∞,0)上递减C.在R上递增D.在R上递减-高二数学

题目详情

已知f(x)是R上的增函数,且f(x)<0,则函数g(x)=x2f(x)的单调情况一定是(    )                                       
A.在(-∞,0)上递增B.在(-∞,0)上递减C.在R上递增D.在R上递减
题型:单选题难度:偏易来源:不详

答案

A
∵f(x)是定义域R上的增函数
∴f′(x)>0
∵g′(x)=2xf(x)+x2f′(x),f(x)<0
∴x<0时,g′(x)=2xf(x)+x2f′(x)>0
∴函数g(x)=x2f(x)在(-∞,0)上递增
故选A.

更多内容推荐