已知函数,,,其中且.(I)求函数的导函数的最小值;(II)当时,求函数的单调区间及极值;(III)若对任意的,函数满足,求实数的取值范围.-高二数学

题目简介

已知函数,,,其中且.(I)求函数的导函数的最小值;(II)当时,求函数的单调区间及极值;(III)若对任意的,函数满足,求实数的取值范围.-高二数学

题目详情

已知函数,其中.
(I)求函数的导函数的最小值;
(II)当时,求函数的单调区间及极值;
(III)若对任意的,函数满足,求实数的取值范围.
题型:解答题难度:偏易来源:不详

答案


解:(I),其中.
因为,所以,又,所以
当且仅当时取等号,其最小值为. ……………………………4分
(II)当时,.
………………………………………………………..6分
的变化如下表:








0

0







所以,函数的单调增区间是;单调减区间是.
函数处取得极大值,在处取得极小值.
(III)由题意,.
不妨设,则由.  ……………12分
,则函数单调递增.
恒成立.
恒成立.
因为,因此,只需.
解得
故所求实数的取值范围为
本试题主要考查了导数在研究函数中的运用。

更多内容推荐