在△ABC中,A,B,C的对边分别为a,b,c,向量m=(a,b),n=(b,c).(Ⅰ)若向量m∥n求满足3sinB+cosB-3=0的角B的值;(Ⅱ)若A-C=π3,试用角B表示角A与C;(Ⅲ)若

题目简介

在△ABC中,A,B,C的对边分别为a,b,c,向量m=(a,b),n=(b,c).(Ⅰ)若向量m∥n求满足3sinB+cosB-3=0的角B的值;(Ⅱ)若A-C=π3,试用角B表示角A与C;(Ⅲ)若

题目详情

在△ABC中,A,B,C的对边分别为a,b,c,向量
m
=(a,b)
n
=(b,c)

(Ⅰ)若向量
m
n
求满足
3
sinB+cosB-
3
=0
的角B的值;
(Ⅱ)若A-C=
π
3
,试用角B表示角A与C;
(Ⅲ)若
m
n
=2b2
,且A-C=
π
3
,求cosB的值.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)∵
m
=(a,b)
n
=(b,c)
m
n

∴b2=ac,
cosB=
a2+c2-b2
2ac
≥class="stub"2ac-ac
2ac
=class="stub"1
2

当且仅当a=c时取等号,
∵0<B<π,∴0<B≤class="stub"π
3

3
sinB+cosB-
3
=0

得:sin(B+class="stub"π
6
)=
3
2

B+class="stub"π
6
∈(class="stub"π
6
,class="stub"π
2
]

B+class="stub"π
6
=class="stub"π
3
,∴B=class="stub"π
6

(Ⅱ)在△ABC中,∵A-C=class="stub"π
3
,A+C=π-B,∴A=class="stub"2π
3
-class="stub"B
2
,C=class="stub"π
3
-class="stub"B
2

(Ⅲ)∵
m
n
=2b2

∴a+c=2b,
∴sinA+sinC=2sinB,
A-C=class="stub"π
3
及(Ⅱ)的结论得:
sin(class="stub"2π
3
-class="stub"B
2
)+sin(class="stub"π
3
-class="stub"B
2
)=2sinB

展开化简,得
3
cosclass="stub"B
2
=2×2sinclass="stub"B
2
cosclass="stub"B
2

cosclass="stub"B
2
≠0,∴sinclass="stub"B
2
=
3
4

cosB=1-2sin2class="stub"B
2
=1-class="stub"3
8
=class="stub"5
8

更多内容推荐