优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 设函数f(x)=lnx-12ax2-bx.(Ⅰ)当a=b=12时,求f(x)的最大值;(Ⅱ)令F(x)=f(x)+12ax2+bx+ax(0<x≤3),以其图象上任意一点P(x0,y0)为切点的切线的
设函数f(x)=lnx-12ax2-bx.(Ⅰ)当a=b=12时,求f(x)的最大值;(Ⅱ)令F(x)=f(x)+12ax2+bx+ax(0<x≤3),以其图象上任意一点P(x0,y0)为切点的切线的
题目简介
设函数f(x)=lnx-12ax2-bx.(Ⅰ)当a=b=12时,求f(x)的最大值;(Ⅱ)令F(x)=f(x)+12ax2+bx+ax(0<x≤3),以其图象上任意一点P(x0,y0)为切点的切线的
题目详情
设函数f(x)=lnx-
1
2
ax
2
-bx.
(Ⅰ)当a=b=
1
2
时,求f(x)的最大值;
(Ⅱ)令F(x)=f(x)+
1
2
ax
2
+bx+
a
x
(0<x≤3),以其图象上任意一点P(x
0
,y
0
)为切点的切线的斜率k≤
1
2
恒成立,求实数a的取值范围;
(Ⅲ)当a=0,b=-1时,方程2mf(x)=x
2
有唯一实数解,求正数m的值.
题型:解答题
难度:中档
来源:渭南三模
答案
(Ⅰ)依题意,知f(x)的定义域为(0,+∞).(1分)
当
a=b=
class="stub"1
2
时,
f(x)=lnx-
class="stub"1
4
x
2
-
class="stub"1
2
x
,
f
′
(x)=
class="stub"1
x
-
class="stub"1
2
x-
class="stub"1
2
=
-(x+2)(x-1)
2x
.(2分)
令f′(x)=0,解得x=1.
当0<x<1时,f′(x)>,此时f(x)单调递增;
当x>1时,f′(x)<0,此时f(x)单调递减.(3分)
所以f(x)的极大值为
f(1)=-
class="stub"3
4
,此即为最大值.(4分)
(Ⅱ)
F(x)=lnx+
class="stub"a
x
,x∈(0,3]
,
所以
k=
F
′
(
x
0
)=
x
0
-a
x
0
2
≤
class="stub"1
2
,在x0∈(0,3]上恒成立,(6分)
所以
a≥
(-
class="stub"1
2
,
x
0
2
+
x
0
)
max
,x0∈(0,3](7分)
当x0=1时,
-
class="stub"1
2
x
0
2
+
x
0
取得最大值
class="stub"1
2
.所以a≥
class="stub"1
2
.(9分)
(Ⅲ)因为方程2mf(x)=x2有唯一实数解,
所以x2-2mlnx-2mx=0有唯一实数解.
设g(x)=x2-2mlnx-2mx,则
g
′
(x)=
2
x
2
-2mx-2m
x
.
令g′(x)=0,得x2-mx-m=0.
因为m>0,x>0,
所以
x
1
=
m-
m
2
+4m
2
<0
(舍去),
x
2
=
m+
m
2
+4m
2
,(10分)
当x∈(0,x2)时,g′(x)<0,g(x)在(0,x2)单调递减,
当x∈(x2,+∞)时,g′(x)>0,g(x)在(x2,+∞)单调递增.
当x=x2时,g′(x2)=0g(x),g(x2)取最小值g(x2).(11分)
因为g(x)=0有唯一解,所以g(x2)=0.
则
g(
x
2
)=0
g
′
(
x
2
)=0
,即
x
2
2
-2mln
x
2
-2m
x
2
=0
x
2
2
-m
x
2
-m =0
所以2mlnx2+mx2-m=0,
因为m>0,所以2lnx2+x2-1=0.(12分)
设函数h(x)=2lnx+x-1,
因为当x>0时,h(x)是增函数,所以h(x)=0至多有一解.(13分)
因为h(I)=0,所以方程的解为(X2)=1,即
m+
m
2
+4m
2
=1
,
解得
m=
class="stub"1
2
(14分)
上一篇 :
已知函数.(Ⅰ)当时,求f(x)在区间上的
下一篇 :
设函数f(x)=x4+bx2+cx+d,当x=t1
搜索答案
更多内容推荐
已知函数,其中a≠0。(1)若对一切x∈R,≥1恒成立,求a的取值集合。(2)在函数的图像上取定两点,,记直线AB的斜率为K,问:是否存在x0∈(x1,x2),使成立?若存在,求的取值范围;-高三数学
已知函数f(x)=ax2+1(a>0),g(x)=x3+bx。(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处有公共切线,求a,b的值;(2)当a=3,b=-9时,函数f(x)+g(
已知函数f(x)=x3+ax2+bx+c在x=1与时,都取得极值.(1)求a,b的值;(2)若,求f(x)的单调区间和极值;(3)若对x∈[﹣1,2]都有恒成立,求c的取值范围.-高三数学
已知函数f(x)=lnx-ax(1)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线方程(2)若函数f(x)在[1,e]上数为最小值为32.求实数a的值.-数学
曲线C:y=ex在点A处的切线l恰好经过坐标原点,则曲线C、直线l、y轴围成的图形面积为()A.3e2-1B.e2+1C.e2D.e2-1-数学
已知函数f(x)=lnx﹣,g(x)=f(x)+ax﹣6lnx,其中a∈R.(1)讨论f(x)的单调性;(2)若g(x)在其定义域内为增函数,求正实数a的取值范围;(3)设函数h(x)=x2﹣mx+4
已知曲线C:y=13x3-x2-4x+1,直线l:x+y+2k-1=0,当x∈[-3,3]时,直线l恒在曲线C的上方,则实数k的取值范围是()A.k>-56B.k<-56C.K<34D.K>34-数学
设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)=,g(x)=f(x)+f′(x).(Ⅰ)求g(x)的单调区间和最小值;(Ⅱ)讨论g(x)与的大小关系;(Ⅲ)是否存在x0>0,使得|
已知函数.(Ⅰ)当时,求f(x)在区间上的最值;(Ⅱ)讨论函数f(x)的单调性;(Ⅲ)当-1<a<0时,有恒成立,求a的取值范围.-高三数学
函数f(x)=ex﹣x(e为自然对数的底数)在区间[﹣1,1]上的最大值是[]A.1+B.1C.e+1D.e﹣1-高三数学
两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影-高三数学
曲线f(x)=x点(4,2)处切线方程是()A.x-4y+4=0B.x+4y+4=0C.4x-y+4=0D.4x+y+4=0-数学
已知函数F(x)=ax-lnx(a>0)(1)若曲线y=f(x)在点(l,f(l))处的切线方程为y=2x+b,求a,b的值;(2)若当x∈[l,e]时,函数f(x)的最小值是4,求函数f(x)在该区
过点(1,1)且与f(x)=x2相切的直线方程为______.-数学
已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|
某地有三个村庄,分别位于等腰直角三角形ABC的三个顶点处,已知AB=AC=6km,现计划在BC边的高AO上一点P处建造一个变电站.记P到三个村庄的距离之和为y.(1)设∠PBO=α,把y表示成-高三数
已知函数f(x)=lnx﹣2kx,(k常数)(1)求函数f(x)的单调区间;(2)若f(x)<x3+lnx恒成立,求k的取值范围.-高三数学
设为偶函数,则f(x)在区间上[]A.有最大值,且最大值为2B.有最大值,且最大值为m+1C.有最大值,且最大值为-1D.无最大值-高三数学
已知函数f(x)=lnx,,(1)设函数F(x)=2g(x)﹣f(x),求F(x)的极小值.(2)设函数F(x)=ag(x)﹣f(x),(a>0),若F(x)>0恒成立,求实数a的取值范围.(3)若>
某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且l≥2r.假设该容器的建造费用仅与其表-高三数学
函数f(x)=x3+ax2+bx+a2,在x=1时有极值10,那么a,b的值分别为______.-数学
曲线f(x)=cosx+cos(x-π2)(x∈(-π4,7π4))在(x0,f(x0))处的切线的倾斜角为π4,则x0的值为()A.5π4或7π4B.0C.3π4或πD.0或3π2-数学
已知直线y=x+a与曲线y=lnx相切,则a的值为______.-数学
已知函数.(1)求函数的单调区间;(2)若不等式f(x)≥g(x)在区间(0,+∞)上恒成立,求实数k的取值范围.-高三数学
把边长为6的等边三角形铁皮剪去三个相同的四边形(如图阴影部分)后,用剩余部分做成一个无盖的正三棱柱形容器(不计接缝),设容器的高为x,容积为V(x).(1)写出函数V(x)的解析式-高三数学
若函数在区间[1,e]上的最小值为,则实数a的值为[]A.B.C.D.非上述答案-高三数学
已知奇函数f(x)在x>1时,f(x)=,则f(x)在[-2,]上的值域为[]A.[,0]B.[0,]C.[,]D.[,]-高三数学
若f(x)=x2-a(ln-1)(0<x<e)x2+a(lnx-1)(x≥e其中a∈R(1)当a=-2时,求函数y(x)在区间[e,e2]上的最大值;(2)当a>0,时,若x∈[1,+∞),f(x)≥
若lim△x→0f(x0+3△x)-f(x0)△x=1,则f′(x0)等于______.-数学
曲线y=ex+1在点(0,2)处的切线与两条坐标围成的三角形的面积为()A.4B.2C.1D.12-数学
已知函数f(x)=lnx﹣ax(a∈R).(1)当a=2时,求函数f(x)的单调区间;(2)当a>0时,求函数f(x)在[1,2]上最小值.-高二数学
函数y=e2x图象上的点到直线2x-4y-4=0距离的最小值是______.-数学
烟囱向其周围散落烟尘造成环境污染.已知落在地面某处的烟尘浓度与该处到烟囱的距离的平方成反比,而与该烟囱喷出的烟尘量成正比.现有A,B两座烟囱相距20km,其中B烟囱喷出的-数学
已知,函数(其中为自然对数的底数).(1)求函数在区间上的最小值;(2)设,当时,若对任意,存在,使得,求实数的取值范围.-高三数学
已知函数f(x)=lnx,g(x)=12x2+t(t为常数),直线l与函数f(x),g(x)的图象都相切,且l与函数f(x)图象的切点的横坐标为1,则t的值为______.-数学
已知函数f(x)=x3+bx2+cx+d(b≠0)在x=0处的切线方程为2x-y-1=0;(1)求实数c,d的值;(2)若对任意x∈[1,2],均存在t∈(0,1],使得et-lnt-4≤f(x)-2
请你设计一个包装盒.如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成-高三数学
已知函数f(x)=x3﹣ax2+bx+c的图象为曲线C.(1)若曲线C上存在点P,使曲线C在P点处的切线与x轴平行,求a,b的关系;(2)若函数f(x)可以在x=﹣1和x=3时取得极值,求此时a,b的
已知点P在曲线y=x3-3x上移动,在点P处的切线倾斜角为α,则α的取值范围是()A.[0,π2]B.[23π,π]C.[0,π2)∪[56π,π)D.[0,π2]∪[23π,π)-数学
已知函数f(x)=lnx,g(x)=x2﹣bx(b为常数).(1)函数f(x)的图象在点(1,f(1))处的切线与g(x)的图象相切,求实数b的值;(2)设h(x)=f(x)+g(x),若函数h(x)
函数f(x)=x3+ax2+bx+c,曲线y=f(x)上以点P(1,f(1))为切点的切线方程为y=3x+1.(1)若y=f(x)在x=-2时有极值,求f(x)的表达式;(2)在(1)的条件下,求y=
已知函数F(x)=13ax3-bx2+cx+d(a≠0)的图象过原点,f(x)=F′(x),g(x)=f′(x),f(1)=0,函数y=f(x)与y=g(x)的图象交于不同的两点A、B.(Ⅰ)若y=F
已知,函数(其中e为自然对数的底数).(Ⅰ)求函数f(x)在区间上的最小值;(Ⅱ)设数列{an}的通项,Sn是前n项和,证明:.-高三数学
已知函数.(1)求函数y=f(x)的最小值;(2)证明:对任意恒成立;(3)对于函数f(x)图象上的不同两点,如果在函数f(x)图象上存在点(其中)使得点M处的切线l∥AB,则称直线AB存在“伴侣-高
已知函数,其中.(1)是否存在实数,使得在处取极值?证明你的结论;(2)若在[-1,]上是增函数,求实数的取值范围.-高三数学
已知函数f(x)=-x(1)求函数f(x)的单调区间;(2)设m>0,求f(x)在[m,m]上的最大值;(3)试证明:对任意,不等式恒成立.-高三数学
已知函数满足f(0)=0,f′(1)=0,且f(x)在R上单调递增.(1)求f(x)的解析式;(2)若g(x)=f′(x)﹣m·x在区间[m,m+2]上的最小值为﹣5,求实数m的值.-高三数学
直线l与函数y=sinx(x∈[0,π])的图象相切于点A,且l∥OP,其中O为坐标原点,P为图象的极大值点,则点A的纵坐标是()A.2πB.12C.π2-42D.π2-4π-数学
f(x)=2x3-6x2+a在[-2,2]上有最大值3,那么在[-2,2]上f(x)的最小值是()A.-5B.-11C.-29D.-37-数学
已知函数f(x)=﹣x3+3x2+9x+a(a为常数),在区间[﹣2,2]上有最大值20,那么此函数在区间[﹣2,2]上的最小值为().-高三数学
返回顶部
题目简介
设函数f(x)=lnx-12ax2-bx.(Ⅰ)当a=b=12时,求f(x)的最大值;(Ⅱ)令F(x)=f(x)+12ax2+bx+ax(0<x≤3),以其图象上任意一点P(x0,y0)为切点的切线的
题目详情
(Ⅰ)当a=b=
(Ⅱ)令F(x)=f(x)+
(Ⅲ)当a=0,b=-1时,方程2mf(x)=x2有唯一实数解,求正数m的值.
答案
当a=b=
f′(x)=
令f′(x)=0,解得x=1.
当0<x<1时,f′(x)>,此时f(x)单调递增;
当x>1时,f′(x)<0,此时f(x)单调递减.(3分)
所以f(x)的极大值为f(1)=-
(Ⅱ)F(x)=lnx+
所以k=F′(x0)=
所以a≥(-
当x0=1时,-
(Ⅲ)因为方程2mf(x)=x2有唯一实数解,
所以x2-2mlnx-2mx=0有唯一实数解.
设g(x)=x2-2mlnx-2mx,则g′(x)=
令g′(x)=0,得x2-mx-m=0.
因为m>0,x>0,
所以x1=
当x∈(0,x2)时,g′(x)<0,g(x)在(0,x2)单调递减,
当x∈(x2,+∞)时,g′(x)>0,g(x)在(x2,+∞)单调递增.
当x=x2时,g′(x2)=0g(x),g(x2)取最小值g(x2).(11分)
因为g(x)=0有唯一解,所以g(x2)=0.
则
所以2mlnx2+mx2-m=0,
因为m>0,所以2lnx2+x2-1=0.(12分)
设函数h(x)=2lnx+x-1,
因为当x>0时,h(x)是增函数,所以h(x)=0至多有一解.(13分)
因为h(I)=0,所以方程的解为(X2)=1,即
解得m=