已知cos(x-π4)=210,x∈(π2,3π4).(1)求sinx的值;(2)求sin(2x+π3)的值.-数学

题目简介

已知cos(x-π4)=210,x∈(π2,3π4).(1)求sinx的值;(2)求sin(2x+π3)的值.-数学

题目详情

已知cos(x-
π
4
)=
2
10
,x∈(
π
2
4
).
(1)求sinx的值;
(2)求sin(2x+
π
3
)的值.
题型:解答题难度:中档来源:天津

答案

(1)因为x∈(class="stub"π
2
class="stub"3π
4
),
所以x-class="stub"π
4
∈(class="stub"π
4
,class="stub"π
2
),
sin(x-class="stub"π
4
)=
1-cos2(x-class="stub"π
4
)
=
7
2
10

sinx=sin[(x-class="stub"π
4
)+class="stub"π
4
]
=sin(x-class="stub"π
4
)cosclass="stub"π
4
+cos(x-class="stub"π
4
)sinclass="stub"π
4

=
7
2
10
×
2
2
+
2
10
×
2
2
=class="stub"4
5

(2)因为x∈(class="stub"π
2
class="stub"3π
4
),
故cosx=-
1-sin2x
=-
1-(class="stub"4
5
)2
=-class="stub"3
5

sin2x=2sinxcosx=-class="stub"24
25

cos2x=2cos2x-1=-class="stub"7
25

所以sin(2x+class="stub"π
3
)=sin2xcosclass="stub"π
3
+cos2xsinclass="stub"π
3

=-
24+7
3
50

更多内容推荐