如图,已知四棱锥P-ABCD的底面ABCD为等腰梯形,AB∥DC,AC⊥BD,AC与BD相交于点O,且顶点P在底面上的射影恰为O点,又BO=2,PO=,PB⊥PD,(Ⅰ)求异面直接PD与BC所成角的余

题目简介

如图,已知四棱锥P-ABCD的底面ABCD为等腰梯形,AB∥DC,AC⊥BD,AC与BD相交于点O,且顶点P在底面上的射影恰为O点,又BO=2,PO=,PB⊥PD,(Ⅰ)求异面直接PD与BC所成角的余

题目详情

如图,已知四棱锥P-ABCD的底面ABCD为等腰梯形,AB∥DC,AC⊥BD,AC与BD相交于点O,且顶点P在底面上的射影恰为O点,又BO=2,PO=,PB⊥PD,
(Ⅰ)求异面直接PD与BC所成角的余弦值;
(Ⅱ)求二面角P-AB-C的大小;
(Ⅲ)设点M在棱PC上,且=λ,问λ为何值时,PC⊥平面BMD。
题型:解答题难度:中档来源:山东省高考真题

答案

解:∵PO⊥平面ABCD,
∴PO⊥BD,

由平面几何知识得:
(Ⅰ)过D作DE∥BC交AB于E,连结PE,
则∠PDE或其补角为异面直线PD与BC所成的角,
∵四边形ABCD是等腰梯形,


又AB∥DC,
∴四边形EBCD是平行四边形。

∴E是AB的中点,且

∴△PEA为直角三角形,

在△PED中,由余弦定理得

故异面直线PD与BC所成的角的余弦值为
(Ⅱ)连结OE,由(Ⅰ)及三垂线定理知,
∠PEO为二面角P-AB-C的平面角,


∴二面角P-AB-C的大小为45°。
(Ⅲ)连结MD,MB,MO,
平面平面BMD,
∵PC⊥OM,
又在Rt△POC中,


故λ=2时,PC⊥平面BMD。

更多内容推荐