在△ABC中,cosB=-513,cosC=45,AB=13,求BC.-数学

题目简介

在△ABC中,cosB=-513,cosC=45,AB=13,求BC.-数学

题目详情

在△ABC中,cosB=-
5
13
cosC=
4
5
,AB=13,求BC.
题型:解答题难度:中档来源:不详

答案

∵cosB=-class="stub"5
13
<0,
∴B为钝角,A,C为锐角,
∴sinB=
1-cos2B
=class="stub"12
13

∵cosC=class="stub"4
5

∴sinC=
1-cos2C
=class="stub"3
5

∴sinA=sin(B+C)=sinBcosC+cosBsinC=class="stub"33
65

∵AB=13,由正弦定理得class="stub"BC
sinA
=class="stub"AB
sinC

∴BC=class="stub"ABsinA
sinC
=13×class="stub"33
65
×class="stub"5
3
=11.

更多内容推荐