请阅读,完成证明和填空.九年级数学兴趣小组在学校的“数学长廊”中兴奋地展示了他们小组探究发现的结果,内容如下:(1)如图1,正三角形ABC中,在AB、AC边上分别取点M、N,使BM-九年级数学

题目简介

请阅读,完成证明和填空.九年级数学兴趣小组在学校的“数学长廊”中兴奋地展示了他们小组探究发现的结果,内容如下:(1)如图1,正三角形ABC中,在AB、AC边上分别取点M、N,使BM-九年级数学

题目详情

请阅读,完成证明和填空. 九年级数学兴趣小组在学校的“数学长廊”中兴奋地展示了他们小组探究发现的结果,内容如下:
(1)如图1,正三角形ABC中,在AB、AC边上分别取点M、N,使BM=AN,连接BN、CM,发现BN=CM,且∠NOC=60度.请证明:∠NOC=60度.
(2)如图2,正方形ABCD中,在AB、BC边上分别取点M、N,使AM=BN,连接AN、DM,那么AN=(    ),且∠DON=(    )度.
(3)如图3,正五边形ABCDE中,在AB、BC边上分别取点M、N,使AM=BN,连接AN、EM,那么AN=(    ),且∠EON=(    )度.
(4)在正n边形中,对相邻的三边实施同样的操作过程,也会有类似的结论. 请大胆猜测,用一句话概括你的发现:(    ).
题型:解答题难度:中档来源:广东省期末题

答案

(1)证明:∵△ABC是正三角形,
∴∠A=∠ABC=60°,AB=BC,在△ABN和△BCM中,
∴△ABN≌△BCM,
∴∠ABN=∠BCM,
又∵∠ABN+∠OBC=60°,
∴∠BCM+∠OBC=60°,
∴∠NOC=60°;
(2)解:∵四边形ABCD是正方形,
∴∠DAM=∠ABN=90°,AD=AB,
又∵AM=DN,
∴△ABN≌△DAM,
∴AN=DM,∠ADM=∠BAN,
又∵∠ADM+∠AMD=90°,
∴∠BAN+∠AMD=90°
∴∠AOM=90°;即∠DON=90°.
(3)解:∵五边形ABCDE是正五边形,
∴∠A=∠B,AB=AE,
又∵AM=BN,
∴△ABN≌△EAM,
∴AN=ME,
∴∠AEM=∠BAN,
∴∠NOE=∠NAE+∠AEM=∠NAE+∠BAN=∠BAE=108°;
(4)解:以上所求的角恰好等于正n边形的内角

更多内容推荐