△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE。(1)如图(a)所示,当-八

题目简介

△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE。(1)如图(a)所示,当-八

题目详情

△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE。
(1)如图(a)所示,当点D在线段BC上时。
 ①求证:△AEB≌△ADC;
 ②探究四边形BCGE是怎样特殊的四边形?并说明理由;
(2)如图(b)所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立;(3)在(2)的情况下,当点D运动到什么位置时,四边形BCGE是菱形?并说明理由。
题型:解答题难度:中档来源:河南省期末题

答案

证明:
(1)①
∵△ABC和△ADE都是等边三角形,
∴AE=AD,AB=AC,∠EAD=∠BAC=60°。
又∵∠EAB=∠EAD﹣∠BAD,∠DAC=∠BAC﹣∠BAD,
∴∠EAB=∠DAC,
∴△AEB≌△ADC。
②方法一:由①得△AEB≌△ADC,
∴∠ABE=∠C=60°,
又∵∠BAC=∠C=60°,
∴∠ABE=∠BAC,
∴EB∥GC。
又∵EG∥BC,
∴四边形BCGE是平行四边形。
方法二:证出△AEG≌△ADB,得EG=AB=BC。
由①得△AEB≌△ADC.得BE=CG。
∴四边形BCGE是平行四边形。
(2)①②都成立。
(3)当CD=CB (∠CAD=30°或∠BAD=90°或∠ADC=30°)时,四边形BCGE是菱形。
理由:方法一:由①得△AEB≌△ADC,
∴BE=CD,
又∵CD=CB,
∴BE=CB。由②得四边形BCGE是平行四边形,
∴四边形BCGE是菱形。
方法二:由①得△AEB≌△ADC,
∴BE=CD。
又∵四边形BCGE是菱形,
∴BE=CB
∴CD=CB。
方法三:
∵四边形BCGE是平行四边形,
∴BE∥CG,EG∥BC,
∴∠FBE=∠BAC=60°,∠F=∠ABC=60°
∴∠F=∠FBE=60°,
∴△BEF是等边三角形.
又∵AB=BC,四边形BCGE是菱形,
∴AB=BE=BF,
∴AE⊥FG
∴∠EAG=30°,
∵∠EAD=60°,
∴∠CAD=30°。

更多内容推荐