如图,AD是△ABC的角平分线,H,G分别在AC,AB上,且HD=BD.(1)求证:∠B与∠AHD互补;(2)若∠B+2∠DGA=180°,请探究线段AG与线段AH、HD之间满足的等量关系,并加以证明

题目简介

如图,AD是△ABC的角平分线,H,G分别在AC,AB上,且HD=BD.(1)求证:∠B与∠AHD互补;(2)若∠B+2∠DGA=180°,请探究线段AG与线段AH、HD之间满足的等量关系,并加以证明

题目详情

如图,AD是△ABC的角平分线,H,G分别在AC,AB上,且HD=BD.
(1)求证:∠B与∠AHD互补;
(2)若∠B+2∠DGA=180°,请探究线段AG与线段AH、HD之间满足的等量关系,并加以证明.
题型:解答题难度:中档来源:湖北省期末题

答案

证明:(1)在AB上取一点M,使得AM=AH,连接DM,
 ,
∴△AHD≌△AMD,
∴HD=MD,∠AHD=∠AMD,
∵HD=DB,
∴DB=MD,
∴∠DMB=∠B,
∵∠AMD+∠DMB=180°,
∴∠AHD+∠B=180°,即∠B与∠AHD互补.
(2)由(1)∠AHD=∠AMD,HD=MD,∠AHD+∠B=180°,
∵∠B+2∠DGA=180°,∠AHD=2∠DGA,
∴∠AMD=2∠DGM,
又∵∠AMD=∠DGM+∠GDM,
∴2∠DGM=∠DGM+∠GDM,即∠DGM=∠GDM,
∴MD=MG,
∴HD=MG,
∵AG=AM+MG,
∴AG=AH+HD.

更多内容推荐