如图,已知B(﹣1,0),C(1,0),A为y轴正半轴上一点,点D为第二象限一动点,E在BD的延长线上,CD交AB于F,且∠BDC=∠BAC.(1)求证:∠ABD=∠ACD;(2)求证:AD平分∠CD

题目简介

如图,已知B(﹣1,0),C(1,0),A为y轴正半轴上一点,点D为第二象限一动点,E在BD的延长线上,CD交AB于F,且∠BDC=∠BAC.(1)求证:∠ABD=∠ACD;(2)求证:AD平分∠CD

题目详情

如图,已知B(﹣1,0),C(1,0),A为y轴正半轴上一点,点D为第二象限一动点,E在BD的延长线上,CD交AB于F,且∠BDC=∠BAC.
(1)求证:∠ABD=∠ACD;
(2)求证:AD平分∠CDE;
(3)若在D点运动的过程中,始终有DC=DA+DB,在此过程中,∠BAC的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC的度数?
题型:证明题难度:中档来源:湖北省期中题

答案

证明:(1)∵∠BDC=∠BAC,∠DFB=∠AFC,
又∴∠ABD+∠BDC+∠DFB=∠BAC+∠ACD+∠AFC=180°,
∴∠ABD=∠ACD;
(2)过点A作AM⊥CD于点M,作AN⊥BE于点N.则∠AMC=∠ANB=90°.
∵∠ABD=∠ACD,AB=AC,
∴△ACM≌△ABN (AAS)
∴AM=AN.
∴AD平分∠CDE.(到角的两边距离相等的点在角的平分线上);
(3)∠BAC的度数不变化.在CD上截取CP=BD,连接AP.
∵CD=AD+BD,∴AD=PD.
∵AB=AC,∠ABD=∠ACD,BD=CP,
∴△ABD≌△ACP.
∴AD=AP;∠BAD=∠CAP.
∴AD=AP=PD,即△ADP是等边三角形,∴∠DAP=60°.
∴∠BAC=∠BAP+∠CAP=∠BAP+∠BAD=60°.

更多内容推荐