如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q。(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合)

题目简介

如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q。(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合)

题目详情

如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q。
(1)求证:OP=OQ;
(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合)。设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形。
题型:解答题难度:中档来源:河南省期末题

答案

(1)证明:
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠PDO=∠QBO,又OB=OD,∠POD=∠QOB,
∴△POD≌△QOB,
∴OP=OQ;
(2)解:PD=8﹣t,
∵四边形PBQD是菱形,
∴PD=BP=8﹣t,
∵四边形ABCD是矩形,
∴∠A=90°,在Rt△ABP中,由勾股定理得:AB2+AP2=BP2,即62+t2=(8﹣t)2,
解得:t=
即,秒时,四边形PBQD是菱形。

更多内容推荐