如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE.判断四边形ADCF的形状,并说明理由.-数学

题目简介

如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE.判断四边形ADCF的形状,并说明理由.-数学

题目详情

如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE.判断四边形ADCF的形状,并说明理由.
题型:解答题难度:中档来源:不详

答案

四边形ADCF矩形;
理由:∵△ADE绕点E旋转180°得△CFE,
∴AE=CE,DE=EF.
∴四边形ADCF是平行四边形.
∵AC=BC,点D是边AB的中点,
∴CD⊥AB,
∴∠ADC=90°.
∴四边形ADCF矩形.

更多内容推荐