已知,如图,正方形的边长为6,菱形的三个顶点分别在正方形边上,,连接.(1)当时,求的面积;(2)设,用含的代数式表示的面积;(3)判断的面积能否等于,并说明理由.-八年级数学

题目简介

已知,如图,正方形的边长为6,菱形的三个顶点分别在正方形边上,,连接.(1)当时,求的面积;(2)设,用含的代数式表示的面积;(3)判断的面积能否等于,并说明理由.-八年级数学

题目详情

已知,如图,正方形的边长为6,菱形的三个顶点分别在正方形上,,连接
(1)当时,求的面积;
(2)设,用含的代数式表示的面积;
(3)判断的面积能否等于,并说明理由.
题型:解答题难度:中档来源:不详

答案

(1)
正方形中,
,因此,即菱形的边长为
中,



,即菱形是正方形.
同理可以证明
因此,即点边上,同时可得
从而.   2分
(1)要求△FCG的面积,可以转化到面积易求的三角形中,通过证明△DGH≌△CFG得出.
(2)欲求△FCG的面积,由已知得CG的长易求,只需求出GC边的高,通过证明△AHE≌△MFG可得;
(3)若S△FCG=1,由S△FCG=6﹣x,得x=5,此时,在△DGH中,HG=.相应地,在△AHE中,AE=,即点E已经不在边AB上.故不可能有S△FCG=1.

更多内容推荐