已知数列{an}的前n项和Sn是二项式(1+2x)2n(n∈N*)展开式中含x奇次幂的系数和.(1)求数列{an}的通项公式;(2)设f(n)=49an+12,求cn=f(0)+f(1n)+f(2n)

题目简介

已知数列{an}的前n项和Sn是二项式(1+2x)2n(n∈N*)展开式中含x奇次幂的系数和.(1)求数列{an}的通项公式;(2)设f(n)=49an+12,求cn=f(0)+f(1n)+f(2n)

题目详情

已知数列{an}的前n项和Sn是二项式(1+2x)2n(n∈N*)展开式中含x奇次幂的系数和.
(1)求数列{an}的通项公式;
(2)设f(n)=
4
9an+12
,求cn=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n
n
),求
1
c1c2
+
1
c2c3
+…+
1
cncn+1
的值.
题型:解答题难度:中档来源:襄阳模拟

答案

(1)记(1+2x)2n=a0+a1x+a2x2+…+a2n-1x2n-1+a2nx2n
令x=1得:32n=a0+a1+a2+…+a2n-1+a2n
令x=-1得:1=a0-a1+a2-…-a2n-1+a2n
两式相减得:32n-1=2(a1+a3+…+a2n-1)
∴Sn=class="stub"1
2
(9n-1)(4分)
当n≥2时,an=Sn-Sn-1=4×9n-1当n=1时,a1=S1=4,适合上式
∴an=4×9n-1(n∈N)    (6分)
(2)f(n)=class="stub"4
9n+12
=class="stub"1
9n+3

注意到f(n)+f(1-n)=class="stub"1
9n+3
+class="stub"1
91-n+3
=class="stub"1
9n+3
+
9n
9+3×9n
=class="stub"1
3
    (8分)
cn=f(0)+f(class="stub"1
n
)+f(class="stub"2
n
)+…+f(class="stub"n
n
),
可改写为cn=f(class="stub"n
n
)+f(class="stub"n-1
n
)+…+f(class="stub"1
n
)+f(0)
∴2cn=[f(0)+f(class="stub"n
n
)]+[f(class="stub"1
n
)+f(class="stub"n-1
n
)]+…+[f(class="stub"n-1
n
)+f(class="stub"1
n
)]+[f(class="stub"n
n
)+f(0)]
故cn=class="stub"n+1
6
,即f(0)+f(class="stub"1
n
)+f(class="stub"2
n
)+…+f(class="stub"n
n
)=class="stub"n+1
6
   (8分)
class="stub"1
cncn+1
=class="stub"36
(n+1)(n+2)
=36×(class="stub"1
n+1
-class="stub"1
n+2

class="stub"1
c1c2
+class="stub"1
c2c3
+…+class="stub"1
cncn+1

=36×[(class="stub"1
2
-class="stub"1
3
)+(class="stub"1
3
-class="stub"1
4
)+…+(class="stub"1
n+1
-class="stub"1
n+2
)    (12分)
=36×(class="stub"1
2
-class="stub"1
n+2
)]=18-class="stub"36
n+2
(14分)

更多内容推荐