已知定义在区间(0,+∞)上的函数f(x)满足f(x1x2)=f(x1)-f(x2),且当x>1时,f(x)<0.(1)求f(1)的值;(2)判断并证明f(x)的单调性;(3)若f(3)=-1,求f(

题目简介

已知定义在区间(0,+∞)上的函数f(x)满足f(x1x2)=f(x1)-f(x2),且当x>1时,f(x)<0.(1)求f(1)的值;(2)判断并证明f(x)的单调性;(3)若f(3)=-1,求f(

题目详情

已知定义在区间(0,+∞)上的函数f(x)满足f(
x1
x2
)=f(x1)-f(x2),且当x>1时,f(x)<0.
(1)求f(1)的值;
(2)判断并证明f(x)的单调性;
(3)若f(3)=-1,求f(x)在[2,9]上的最小值.
题型:解答题难度:中档来源:不详

答案

(1)∵定义在区间(0,+∞)上的函数f(x)满足f(
x1
x2
)=f(x1)-f(x2),
∴当x1=x2时,f(1)=O.
(2)f(x)是减函数.
证明:设x1>x2,则f(x1)-f(x2)=f(
x1
x2
),
∵x1>x2,∴
x1
x2
>1,
∵当x>1时,f(x)<0,
∴f(x1)-f(x2)<0,
∴f(x)在区间(0,+∞)是减函数.
(3)∵f(1)=O f(3)=-1,
∴f(class="stub"1
3
)=f(1)-f(3)=0-(-1)=1,
∴f(9)=f(3÷class="stub"1
3
)=f(3)-f(class="stub"1
3
)=-1-1=-2,
∵f(x)在区间(0,+∞)是减函数,
∴f(x)在[2,9]上的最小值为f(9)=-2.

更多内容推荐