对于函数f(x),若存在x0∈R,使得f(x0)=x0,则称x0为函数f(x)的不动点.若函数f(x)=x2+abx-c(b,c∈N*)有且仅有两个不动点0和2,且f(-2)<-12.(1)试求函数f

题目简介

对于函数f(x),若存在x0∈R,使得f(x0)=x0,则称x0为函数f(x)的不动点.若函数f(x)=x2+abx-c(b,c∈N*)有且仅有两个不动点0和2,且f(-2)<-12.(1)试求函数f

题目详情

对于函数f(x),若存在x0∈R,使得f(x0)=x0,则称x0为函数f(x)的不动点.若函数f(x)=
x2+a
bx-c
(b,c∈N*)有且仅有两个不动点0和2,且f(-2)<-
1
2

(1)试求函数f(x)的单调区间,
(2)已知各项不为0的数列{an}满足4Sn•f(
1
an
)=1,其中Sn表示数列{an}的前n项和,求证:(1-
1
an
)an+1
1
e
<(1-
1
an
)an

(3)在(2)的前题条件下,设bn=-
1
an
,Tn表示数列{bn}的前n项和,求证:T2011-1<ln2011<T2010
题型:解答题难度:中档来源:不详

答案

(1)∵函数f(x)=
x2+a
bx-c
(b,c∈N*)有且仅有两个不动点0和2,
class="stub"0+a
0-c
=0
class="stub"4+a
2b-c
=2

∴a=0,2b-c=2.
f(x)=
x2
bx+2-2b

∵f(-2)<-class="stub"1
2

class="stub"4
2-4b
<-class="stub"1
2

class="stub"2
2b-1
>class="stub"2
4

∴0<2b-1<4,
class="stub"1
2
<b<class="stub"5
2

∵b,c∈N*,
∴b=1,c=0(舍),或b=2,c=2.
f(x)=
x2
2x-2
.定义域为x≠1,
f(x)=
2x(2x-2)-2x2
(2x-2)2
=
2x2-4x
(2x-2)2

f(x)=
2x2-4x
(2x-2)2
>0,得x<0,或x>2,
f(x)=
2x2-4x
(2x-2)2
<0,得0<x<2,
∵x≠1,
∴函数f(x)的单调增区间是(-∞,0),(2,+∞);单调减区间是(0,1),(1,2).
(2)∵各项不为0的数列{an}满足4Sn•f(class="stub"1
an
)=1,
4Sn
class="stub"1
an2
class="stub"2
an
-2
=4Sn•class="stub"1
2an-2an2
=1,
4Sn=2an-2an2
∴2Sn=an-an2
当n≥2时,2Sn-1=an-1-an-12
两式相减,得an=-an-1,或an-an-1=-1,
当n=1时,a1=-1,
由an=-an-1,知a2=1,不在定义域范围内,应舍去.
故an-an-1=-1,
∴an=-n.
(1-class="stub"1
an
)an+1<class="stub"1
e
<(1-class="stub"1
an
)an
等价于(1+class="stub"1
n
)-(n+1)<class="stub"1
e
(1+class="stub"1
n
)-n,
(1+class="stub"1
n
)n<e<(1+class="stub"1
n
)n+1

两边取对数后,nln(1+class="stub"1
n
)<1<(n+1)ln(1+class="stub"1
n
)

即证class="stub"1
n+1
<ln(1+class="stub"1
n
)<class="stub"1
n

设f(x)=ln(1+x)-x,x>0
则 f′(x)=class="stub"1
1+x
-1<0,
所以 f(x)在(0,+∞)上是减函数,
于是 f(x)<f(0)=0 即 ln(1+x)<x.
设g(x)=class="stub"x
1+x
-ln(1+x),
则 g′(x)=class="stub"1
(1+x)2
-class="stub"1
1+x
=-class="stub"x
(1+x)2
<0,
所以 g(x)在(0,+∞)上是减函数,于是 g(x)<g(0)=0,
class="stub"x
1+x
<ln(1+x).
class="stub"x
1+x
<ln(1+x)<x

令x=class="stub"1
n
,得class="stub"1
n+1
<ln(1+class="stub"1
n
)<class="stub"1
n

(1-class="stub"1
an
)an+1<class="stub"1
e
<(1-class="stub"1
an
)an

(3)由(2)得,bn=class="stub"1
n

Tn=1+class="stub"1
2
+class="stub"1
3
+…+class="stub"1
n

class="stub"1
n+1
<ln(1+class="stub"1
n
)<class="stub"1
n
中,
令n=1,2,3,…,2010,
并将各式相加,得
class="stub"1
2
+class="stub"1
3
+…+class="stub"1
2011
lnclass="stub"2
1
+lnclass="stub"3
2
+…+lnclass="stub"2011
2010
1+class="stub"1
2
+class="stub"1
3
+…+class="stub"1
2010

∴T2011-1<ln2011<T2010.

更多内容推荐