函数y=sin(-2x+π6)+3cos(2x-π2)的递增区间是______-数学

题目简介

函数y=sin(-2x+π6)+3cos(2x-π2)的递增区间是______-数学

题目详情

函数y=sin(-2x+
π
6
)+
3
cos(2x-
π
2
)
的递增区间是______
题型:填空题难度:中档来源:不详

答案

原式=-(sin2xcosclass="stub"π
6
-cos2xsinclass="stub"π
6
)+
3
sin2x
=-
3
2
sin2x+class="stub"1
2
cos2x+
3
sin2x
=
3
2
sin2x+class="stub"1
2
cos2x
=cosclass="stub"π
3
cos2x+sinclass="stub"π
3
sin2x
=cos(2x-class="stub"π
3

∵y=cos(2x-class="stub"π
3
)的递增区间为2kπ-π≤2x-class="stub"π
3
≤2kπ
即kπ-class="stub"π
3
≤x≤kπ+class="stub"π
6

y=sin(-2x+class="stub"π
6
)+
3
cos(2x-class="stub"π
2
)
的递增区间为[kπ-class="stub"π
3
,kπ+class="stub"π
6
](k∈Z)
故答案为[kπ-class="stub"π
3
,kπ+class="stub"π
6
](k∈Z)

更多内容推荐