(文)设x,y∈R+,且xy=1+x+y,则xy的最小值为______.-数学

题目简介

(文)设x,y∈R+,且xy=1+x+y,则xy的最小值为______.-数学

题目详情

(文)设x,y∈R+,且xy=1+x+y,则xy的最小值为______.
题型:填空题难度:中档来源:不详

答案

∵x,y∈R+,∴xy≤
(x+y)2
4
(当且仅当x=y时成立)
∵xy=1+x+y,∴1+x+y≤
(x+y)2
4
,解得x+y≥2+2
2
或x+y≤2-2
2
(舍去)
∴x+y的最小值为2+2
2

故答案为:2+2
2

更多内容推荐