如图,AB∥CD,∠ABF=23∠ABE,∠CDF=23∠CDE,则∠E:∠F=()A.2:1B.3:1C.3:2D.4:3-数学

题目简介

如图,AB∥CD,∠ABF=23∠ABE,∠CDF=23∠CDE,则∠E:∠F=()A.2:1B.3:1C.3:2D.4:3-数学

题目详情

如图,ABCD,∠ABF=
2
3
∠ABE,∠CDF=
2
3
∠CDE,则∠E:∠F=(  )
A.2:1B.3:1C.3:2D.4:3
360优课网
题型:单选题难度:中档来源:不详

答案


360优课网
过点E、F分别作AB的平行线EG、FH,由平行线的传递性可得ABEGFHCD,
∵ABFH,∴∠ABF=∠BFH,
∵FHCD,∴∠CDF=∠DFH,
∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF;
同理可得∠BED=∠DEG+∠BEG=∠ABE+∠CDE;
∵∠ABF=class="stub"2
3
∠ABE,∠CDF=class="stub"2
3
∠CDE,
∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF=class="stub"2
3
(∠ABE+∠CDE)=class="stub"2
3
∠BED,
∴∠BED:∠BFD=3:2.
故选C.

更多内容推荐