已知:如图,△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE于点E,求证:四边形ADCE是矩形.-数学

题目简介

已知:如图,△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE于点E,求证:四边形ADCE是矩形.-数学

题目详情

已知:如图,△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DEAB交AE于点E,求证:四边形ADCE是矩形.360优课网
题型:解答题难度:中档来源:不详

答案


360优课网

证明:∵AB=AC,
∴∠B=∠ACB,
∵AE是∠BAC的外角平分线,
∴∠FAE=∠EAC,
∵∠B+∠ACB=∠FAE+∠EAC,
∴∠B=∠ACB=∠FAE=∠EAC,
∴AECD,
又∵DEAB,
∴四边形AEDB是平行四边形,
∴AE平行且等于BD,
又∵BD=DC,∴AE平行且等于DC,
故四边形ADCE是平行四边形,
又∵∠ADC=90°,
∴平行四边形ADCE是矩形.
即四边形ADCE是矩形.

更多内容推荐