设f(x)=2x2x+1,g(x)=ax+5-2a(a>0),若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,则a的取值范围是()A.[52,4]B.[4,+∞)C

题目简介

设f(x)=2x2x+1,g(x)=ax+5-2a(a>0),若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,则a的取值范围是()A.[52,4]B.[4,+∞)C

题目详情

f(x)=
2x2
x+1
,g(x)=ax+5-2a(a>0)
,若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,则a的取值范围是(  )
A.[
5
2
,4]
B.[4,+∞)C.(0,
5
2
]
D.[
5
2
,+∞)
题型:单选题难度:中档来源:不详

答案

因为f(x)=
2x2
x+1

当x=0时,f(x)=0,
当x≠0时,f(x)=class="stub"2
class="stub"1
x
+ class="stub"1
x2
=class="stub"2
(class="stub"1
x
+class="stub"1
2
) 2-class="stub"1
4
,由0<x≤1,∴0<f(x)≤1.
故0≤f(x)≤1
又因为g(x)=ax+5-2a(a>0),且g(0)=5-2a,g(1)=5-a.
故5-2a≤g(x)≤5-a.
所以须满足
5-2a≤0
5-a≥1
class="stub"5
2
≤a≤4.
故选A.

更多内容推荐