已知x+2y+3z=1,则x2+y2+z2取最小值时,x+y+z的值为______.-数学

题目简介

已知x+2y+3z=1,则x2+y2+z2取最小值时,x+y+z的值为______.-数学

题目详情

已知x+2y+3z=1,则x2+y2+z2取最小值时,x+y+z的值为______.
题型:填空题难度:偏易来源:不详

答案

由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+32)
故x2+y2+z2≥class="stub"1
14
,当且仅当 class="stub"x
1
=class="stub"y
2
=class="stub"z
3
取等号,
此时y=2x,z=3x,x+2y+3z=14x=1,
∴x=class="stub"1
14
,y=class="stub"2
14
,x=class="stub"3
14

x+y+z=class="stub"6
14
=class="stub"3
7

故答案为:class="stub"3
7

更多内容推荐