如图,⊙O1与⊙O2内切于点P,过P的直线交⊙O1于A,交⊙O2于B,AC切⊙O2于C,交⊙O1于D,且PB、PD的长恰好是关于x的方程x2-m+16x+4=0的两个根.(1)求证:∠1=∠2;(2)

题目简介

如图,⊙O1与⊙O2内切于点P,过P的直线交⊙O1于A,交⊙O2于B,AC切⊙O2于C,交⊙O1于D,且PB、PD的长恰好是关于x的方程x2-m+16x+4=0的两个根.(1)求证:∠1=∠2;(2)

题目详情

如图,⊙O1与⊙O2内切于点P,过P的直线交⊙O1于A,交⊙O2于B,AC切⊙O2于C,交⊙O1于D,且PB、PD的长恰好是关于x的方程x2-
m+16
x+4=0
的两个根.
(1)求证:∠1=∠2;
(2)求PC的长;
(3)若弧BP=弧BC,且S△PBC:S△APC=1:k,求代数式m(k2-k)的值.
题型:解答题难度:中档来源:不详

答案

(1)证明:过P作两圆的公切线MN,则有:
∠MPA=∠PCB=∠D;
又∵AD是⊙O2的切线,
∴∠PCD=∠PBC,
∴△PBC△PCD,
∴∠1=∠2.

(2)由(1)知:△PBC△PCD,得:
PB:PC=PC:PD,即PC2=PB•PD;
∵PB、PD的长是关于x的方程x2-
m+16
x+4=0
的两个根,
∴PB•PD=4,
∴PC2=4,即PC=2.

(3)∵S△PBC:S△APC=1:k,
∴AP:BP=k:1,即AB:AP=(k-1):1;
BP
=
BC

∴∠1=∠BCP,BP=BC;
又∵∠1=∠2,
∴∠2=∠BCP;
∴BCPD,
∴△ABC△APD,
class="stub"BC
PD
=class="stub"AB
AP
,即class="stub"BP
PD
=class="stub"AB
AP

class="stub"BP
PD
=class="stub"k-1
k
,即PB=class="stub"k-1
k
PD,
又∵PB+PD=
m+16

∴PB=
(k-1)
m+16
2k-1
,PD=
k
m+16
2k-1

∵PB•PD=4,即:
(k-1)
m+16
2k-1
×
k
m+16
2k-1
=4,
化简得:k(k-1)(m+16)=4(2k-1)2,即:
(m+16)k2-(m+16)k=16k2-16k+4,
mk2-mk=4,即m(k2-k)=4.

更多内容推荐