设A={x|x2-2x-8<0},B={x|x2+2x-3>0}C={x|x2-3ax+2a2<0}(1)求A∩B与(∁RA)∩∁RB);(2)若C⊆A∩B,求实数a的取值范围.-数学

题目简介

设A={x|x2-2x-8<0},B={x|x2+2x-3>0}C={x|x2-3ax+2a2<0}(1)求A∩B与(∁RA)∩∁RB);(2)若C⊆A∩B,求实数a的取值范围.-数学

题目详情

设A={x|x2-2x-8<0},B={x|x2+2x-3>0}C={x|x2-3ax+2a2<0}
(1)求A∩B与(∁RA)∩∁RB);
(2)若C⊆A∩B,求实数a的取值范围.
题型:解答题难度:中档来源:不详

答案

(1)A={x|-2<x<4},B={x|x<-3或x>1}.
∴A∩B={x|1<x<4}.
CRA={x|x≤-2或x≥4},CRB={x|-3≤x≤1}.
(CRA)∩(CRB)={x|-3≤x≤-2}.
(2)若C⊆(A∩B),
对于集合C,方程x2-2ax+2a2=0,的两根分别为x=2a,a.
①当a=0时,C=∅符合条件.
②当a<0时,2a<a,∴C={x|2a<x<a}不符合条件;
③当a>0时,2a>a,C={x|a<x<2a},此时
a≥1
2a≤4
,解得1≤a≤2.
综上所述:a=0或1≤a≤2.

更多内容推荐