已知函数f(x)=Atan(ωx+φ)(A>0,ω>0,|φ|<π2)的图象与x轴相交的两相邻点的坐标为(π6,0)和(5π6,0),且过点(0,-3).(1)求f(x)的解析式.(2)求满足f(x)

题目简介

已知函数f(x)=Atan(ωx+φ)(A>0,ω>0,|φ|<π2)的图象与x轴相交的两相邻点的坐标为(π6,0)和(5π6,0),且过点(0,-3).(1)求f(x)的解析式.(2)求满足f(x)

题目详情

已知函数f(x)=Atan(ωx+φ)(A>0,ω>0,|φ|<
π
2
)
的图象与x轴相交的两相邻点的坐标为(
π
6
,0)
(
6
,0)
,且过点(0,-3).
(1)求f(x)的解析式.
(2)求满足f(x)≥
3
的x的取值范围.
题型:解答题难度:中档来源:不详

答案

(1)可得f(x)的周期为T=class="stub"5π
6
-class="stub"π
6
=class="stub"2π
3
=class="stub"π
ω
,∴ω=class="stub"3
2

f(x)=Atan(class="stub"3
2
x+φ)
,它的图象过点(class="stub"π
6
,0)
,∴Atan(class="stub"3
2
•class="stub"π
6
+φ)=0

tan(class="stub"π
4
+φ)=0
,∴class="stub"π
4
+φ=kπ
,得φ=kπ-class="stub"π
4
,又|φ|<class="stub"π
2
,∴φ=-class="stub"π
4

于是f(x)=Atan(class="stub"3
2
x-class="stub"π
4
)
,它的图象过点(0,-3),∴Atan(-class="stub"π
4
)=-3
,得A=3.
f(x)=3tan(class="stub"3
2
x-class="stub"π
4
)

(2)由(1)得3tan(class="stub"3
2
x-class="stub"π
4
)≥
3
,∴tan(class="stub"3
2
x-class="stub"π
4
)≥
3
3

kπ+class="stub"π
6
≤class="stub"3
2
x-class="stub"π
4
<kπ+class="stub"π
2
,解得class="stub"2kπ
3
+class="stub"5π
18
≤x<class="stub"2kπ
3
+class="stub"π
2

∴满足f(x)≥
3
的x的取值范围是[class="stub"2kπ
3
+class="stub"5π
18
,class="stub"2kπ
3
+class="stub"π
2
)(k∈Z)

更多内容推荐