设函数f(x)=(sinωx+cosωx)2+2cos2ωx(ω>0)的最小正周期为.(1)求ω的最小正周期;(2)若函数y=g(x)的图象是由y=f(x)的图象向右平移个单位长度得到,求y=g(x)

题目简介

设函数f(x)=(sinωx+cosωx)2+2cos2ωx(ω>0)的最小正周期为.(1)求ω的最小正周期;(2)若函数y=g(x)的图象是由y=f(x)的图象向右平移个单位长度得到,求y=g(x)

题目详情

设函数f(x)=(sinωx+cosωx)2+2cos2ωx(ω>0)的最小正周期为.
(1)求ω的最小正周期;
(2)若函数y=g(x)的图象是由y=f(x)的图象向右平移个单位长度得到,求y=g(x)的单调增区间.
题型:解答题难度:中档来源:不详

答案

(1)(2)(k∈Z)
(1)f(x)=(sinωx+cosωx)2+2cos2ωx=sin2ωx+cos2ωx+sin2ωx+1+cos2ωx
=sin2ωx+cos2ωx+2=sin+2,
依题意得,故ω的最小正周期为.
(2)依题意得g(x)=sin+2=sin+2,
由2kπ-≤3x-≤2kπ+(k∈Z),
kπ+≤x≤kπ+(k∈Z),
故y=g(x)的单调增区间为(k∈Z)

更多内容推荐