已知函数f(x)=2·sincos-sin(x+π).(1)求f(x)的最小正周期;(2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值.-

题目简介

已知函数f(x)=2·sincos-sin(x+π).(1)求f(x)的最小正周期;(2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值.-

题目详情

已知函数f(x)=2·sincos-sin(x+π).
(1)求f(x)的最小正周期;
(2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值.
题型:解答题难度:中档来源:不详

答案

(1)2π(2)最大值2,最小值-1
(1)因为f(x)=sin+sinx=cosx+sinx=2=2sin,所以f(x)的最小正周期为2π.
(2)∵将f(x)的图象向右平移个单位,得到函数g(x)的图象,∴g(x)=f=2sin=2sin.∵x∈[0,π],∴x+
∴当x+,即x=时,sin=1,g(x)取得最大值2.
当x+,即x=π时,sin=-,g(x)取得最小值-1.

更多内容推荐