如图,直线AB、CD相交于点O,OE是∠AOD的平分线,若∠AOC=60°,OF⊥OE.(1)判断OF把∠AOC所分成的两个角的大小关系并证明你的结论;(2)求∠BOE的度数.-数学

题目简介

如图,直线AB、CD相交于点O,OE是∠AOD的平分线,若∠AOC=60°,OF⊥OE.(1)判断OF把∠AOC所分成的两个角的大小关系并证明你的结论;(2)求∠BOE的度数.-数学

题目详情

如图,直线AB、CD相交于点O,OE是∠AOD的平分线,若∠AOC=60°,OF⊥OE.
(1)判断OF把∠AOC所分成的两个角的大小关系并证明你的结论;
(2)求∠BOE的度数.
题型:解答题难度:中档来源:不详

答案

(1)答:∠AOF=∠COF,
证明:∵O是直线CD上一点,
∴∠AOC+∠AOD=180°,
∵∠AOC=60°,
∴∠AOD=180°-60°=120°,
∵OE平分∠AOD,
∠AOE=class="stub"1
2
∠AOD=class="stub"1
2
×120°=60°

∵OF⊥OE,
∴∠FOE=90°
∴∠AOF=∠FOE-∠AOE=90°-60°=30°,
∴∠COF=∠AOC-∠AOF=60°-30°=30°,
∴∠AOF=∠COF.

(2)∵∠AOC=60°,
∴∠BOD=∠AOC=60°,∠AOD=180°-60°=120°,
∵OE是∠AOD的平分线,
∴∠DOE=class="stub"1
2
∠AOD=60°,
∴∠BOE=∠BOD+∠DOE=60°+60°=120°,.

更多内容推荐