在R上定义的函数f(x)是偶函数,且f(x)=f(2-x),若f(x)在区间[1,2]上是减函数,则f(x)在区间[-2,-1]上是()函数,在区间[3,4]上是()函数.A.增,增B.减,减C.减,

题目简介

在R上定义的函数f(x)是偶函数,且f(x)=f(2-x),若f(x)在区间[1,2]上是减函数,则f(x)在区间[-2,-1]上是()函数,在区间[3,4]上是()函数.A.增,增B.减,减C.减,

题目详情

在R上定义的函数f(x)是偶函数,且f(x)=f(2-x),若f(x)在区间[1,2]上是减函数,则f(x)在区间[-2,-1]上是(  )函数,在区间[3,4]上是(  )函数.
A.增,增B.减,减C.减,增D.增,减
题型:单选题难度:偏易来源:不详

答案

因为函数f(x)是偶函数,而偶函数在关于原点对称的区间上单调性相反,
所以f(x)在区间[-2,-1]上是增函数.
又因为f(x)=f(2-x),且f(x)=f(-x),
故有f(-x)=f(2-x),即函数周期为2.
所以区间[3,4]上的单调性和区间[1,2]上单调性相同,
即在区间[3,4]上是减函数.
故选:D.

更多内容推荐