设数集M={x|m≤x≤m+34},N={x|n-13≤x≤n},且M、N都是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N的长度的最小值是______

题目简介

设数集M={x|m≤x≤m+34},N={x|n-13≤x≤n},且M、N都是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N的长度的最小值是______

题目详情

设数集M={x|m≤x≤m+
3
4
}
N={x|n-
1
3
≤x≤n}
,且M、N都是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N的长度的最小值是______.
题型:填空题难度:中档来源:不详

答案

根据题意,M的长度为class="stub"3
4
,N的长度为class="stub"1
3

当集合M∩N的长度的最小值时,
M与N应分别在区间[0,1]的左右两端,
故M∩N的长度的最小值是class="stub"3
4
+class="stub"1
3
-1=class="stub"1
12

故答案为class="stub"1
12

更多内容推荐