设函数f(x)=2sinx(x∈R),区间M=[a,b](a<b),集合N{y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有()A.无数多个B.3个C.2个D.1个-数学

题目简介

设函数f(x)=2sinx(x∈R),区间M=[a,b](a<b),集合N{y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有()A.无数多个B.3个C.2个D.1个-数学

题目详情

设函数f(x)=2sinx (x∈R),区间M=[a,b](a<b),集合N{y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有(  )
A.无数多个B.3个C.2个D.1个
题型:单选题难度:偏易来源:宝山区一模

答案

M=[a,b](a<b),集合N={y|y=f(x),x∈M},则使M=N成立
可转化成函数f(x)=2sinx(x∈R)与函数函数f(x)=x(x∈R)的图象有三个交点,x1,0,x2
不防设x1<0<x2 显然,按题意有(x1,0),(x1,x2),(0,x2)三个实数对.
故选B.

更多内容推荐