已知函数.(1)求函数的单调递增取区间;(2)将函数的图象向左平移个单位后,再将图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数的图象,求的最大值及取得最大值时的-高一数学

题目简介

已知函数.(1)求函数的单调递增取区间;(2)将函数的图象向左平移个单位后,再将图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数的图象,求的最大值及取得最大值时的-高一数学

题目详情

已知函数
(1)求函数的单调递增取区间;
(2)将函数的图象向左平移个单位后,再将图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数的图象,求的最大值及取得最大值时的的集合.
题型:解答题难度:中档来源:不详

答案

(1);(2)的最大值为.
(1)先化简
再由即得递增区间为 .
(2)由已知,.
解:(1)

因此,函数的单调递增区间为 .
(2)由已知,
∴当 时,.
∴ 当的最大值为.

更多内容推荐