如图,△ABC是⊙O的内接三角形,⊙O的直径BD交AC于点E,AF⊥BD与点F,延长AF交BC于点G.求证:AB2=BG·BC-九年级数学

题目简介

如图,△ABC是⊙O的内接三角形,⊙O的直径BD交AC于点E,AF⊥BD与点F,延长AF交BC于点G.求证:AB2=BG·BC-九年级数学

题目详情

如图,△ABC是⊙O的内接三角形,⊙O的直径BD交AC于点E,AF⊥BD与点F,延长AF交BC于点G.求证:AB2=BG·BC
题型:解答题难度:中档来源:不详

答案

见解析.

试题分析:因为直径所对的圆周角是直角,所以作辅助线:连接AD;利用同角的余角相等,可得∠BAG=∠D,又由同弧所对的圆周角相等,可得∠C=∠D,证得∠C=∠BAG,又因为∠ABG是公共角,即可证得△ABG∽△CBA;由相似三角形的对应边成比例,即可证得AB2=BG•BC.
试题解析:
证明:延长AF交圆于H

∵BD直径,AF⊥BD于点F
=
∴∠1=∠C
又∠ABG=∠ABC,
∴△ABG∽△CBA

∴AB2=BG·BC.

更多内容推荐