已知数列an满足a1=1,an+1=an+n(n∈N*),数列bn满足b1=1,(n+2)bn+1=nbn(n∈N*),数列cn满足c1=1,c11+c222+…+cnn2=cn+1n+1(n∈N*)

题目简介

已知数列an满足a1=1,an+1=an+n(n∈N*),数列bn满足b1=1,(n+2)bn+1=nbn(n∈N*),数列cn满足c1=1,c11+c222+…+cnn2=cn+1n+1(n∈N*)

题目详情

已知数列an满足a1=1,an+1=an+n(n∈N*),数列bn满足b1=1,(n+2)bn+1=nbn(n∈N*),数列cn满足c1=1,
c1
1
+
c2
22
+…+
cn
n2
=
cn+1
n+1
(n∈N*
(1)求数列an、bn的通项公式;
(2)求数列cn的通项公式;
(3)是否存在正整数k使得k(an+
7
2
)-
3
bn+1
cn+6n+15
对一切n∈N*恒成立,若存在求k的最小值;若不存在请说明理由.
题型:解答题难度:中档来源:不详

答案

(1)∵a1=1,an+1=an+n(n∈N*)
∴n≥2,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=(n-1)+(n-2)+…+1+1=
n(n-1)
2
+1
=class="stub"1
2
n2-class="stub"1
2
n+1

an=class="stub"1
2
n2-class="stub"1
2
n+1
(n∈N*),(n+2)bn+1=nbn(n∈N*)
bn+1
bn
=class="stub"n
n+2

n≥2,bn=
bn
bn-1
bn-1
bn-2
b2
b1
b1=class="stub"n-1
n+1
•class="stub"n-2
n
…class="stub"1
3
•1
=class="stub"2
n(n+1)

bn=class="stub"2
n(n+1)
(n∈N*)

(2)c1=1,
c1
1
+
c2
22
+…+
cn
n2
=
cn+1
n+1

c1
1
+
c2
22
+…+
cn-1
(n-1)2
=
cn
n
(n≥2)(n∈N*)
两式相减得:
cn
n2
=
cn+1
n+1
-
cn
n

cn+1
cn
=
(n+1)2
n2
n=1,
c1
1
=
c2
2
得出c2=2,n≥2
cn=
cn
cn-1
cn-1
cn-2
c3
c2
c2=
n2
(n-1)2
(n-1)2
(n-2)2
32
22
•2
=
n2
2

cn=
1,n=1
n2
2
,n≥2,n∈N*

(3)当n=1时,k(a1+class="stub"7
2
)-3•class="stub"1
b2
c1+6+15

k>class="stub"62
9
且k∈N*k≥7且k∈N*
当n≥2时,k(an+class="stub"7
2
)-class="stub"3
bn+1
cn+6n+15
,即k(
n2
2
-class="stub"n
2
+class="stub"9
2
)-class="stub"3
2
(n+2)(n+1)>
n2
2
+6n+15

k(n2-n+9)>4n2+21n+36
∵n2-n+9>0恒成立,
k>
4n2+21n+36
n2-n+9

事实上:
4n2+21n+36
n2-n+9
=4+class="stub"25
n+class="stub"9
n
-1
n+class="stub"9
n
≥6
(n=3取等号)
(
4n2+21n+36
n2-n+9
)max
=9∴k>9且k∈N*.
综上:k≥10,k∈N*故k的最小值为10.

更多内容推荐