函数f(x)=x2-2x+4x(x∈[1,3])的值域为()A.[2,3]B.[2,5]C.[73,3]D.[73,4]-数学

题目简介

函数f(x)=x2-2x+4x(x∈[1,3])的值域为()A.[2,3]B.[2,5]C.[73,3]D.[73,4]-数学

题目详情

函数f(x)=
x2-2x+4
x
(x∈[1,3])的值域为(  )
A.[2,3]B.[2,5]C.[
7
3
,3]
D.[
7
3
,4]
题型:单选题难度:偏易来源:静安区一模

答案

变形可得函数f(x)=
x2-2x+4
x
=x+class="stub"4
x
-2,x∈[1,3],
求导数可得f′(x)=1-class="stub"4
x2
,令1-class="stub"4
x2
>0,可得x>2,
故可得函数f(x)在[1,2]上单调递减,在[2,3]上单调递增,
故函数(x)的最小值为f(2)=2,最大值为f(1)或f(3)中的一个,
可得f(1)=3,f(3)=class="stub"7
3
,故最大值为f(1)=3,
故函原数的值域为[2,3]
故选A

更多内容推荐