如图1,以矩形ABCD的顶点A为原点,AD所在的直线为x轴,AB所在的直线为y轴,建立平面直角坐标系.点D的坐标为(8,0),点B的坐标为(0,6),点F在对角线AC上运动(点F不与点A、C重-数学

题目简介

如图1,以矩形ABCD的顶点A为原点,AD所在的直线为x轴,AB所在的直线为y轴,建立平面直角坐标系.点D的坐标为(8,0),点B的坐标为(0,6),点F在对角线AC上运动(点F不与点A、C重-数学

题目详情

如图1,以矩形ABCD的顶点A为原点,AD所在的直线为x轴,AB所在的直线为y轴,建立平面直角坐标系.点D的坐标为(8,0),点B的坐标为(0,6),点F在对角线AC上运动(点F不与点A、C重合),过点F分别作x轴、y轴的垂线,垂足为G、E.设四边形BCFE的面积为S1,四边形CDGF的面积为S2,△AFG的面积为S3
(1)试判断S1,S2的关系,并加以证明;
(2)当S3:S2=1:3时,求点F的坐标;
(3)如图2,在(2)的条件下,把△AEF沿对角线AC所在直线平移,得到△A′E′F′,且A′,F′两点始终在直线AC上,是否存在这样的点E′,使点E′到x轴的距离与到y轴的距离比是5:4?若存在,请求出点E′的坐标;若不存在,请说明理由.
题型:解答题难度:中档来源:不详

答案

(1)S1=S2;
证明:∵FE⊥y轴,FG⊥x轴,∠BAD=90°,
∴四边形AEFG是矩形.
∴AE=GF,EF=AG.
∴S△AEF=S△AFG,
同理S△ABC=S△ACD.
∴S△ABC-S△AEF=S△ACD-S△AFG.
即S1=S2.

(2)∵FGCD,
∴△AFG△ACD.
S3
S3+S2
=(class="stub"FG
CD
)2=(class="stub"AG
AD
)2=class="stub"1
1+3
=class="stub"1
4

∴FG=class="stub"1
2
CD,AG=class="stub"1
2
AD.
∵CD=BA=6,AD=BC=8,
∴FG=3,AG=4.
∴F(4,3);

(3)∵△A′E′F′是由△AEF沿直线AC平移得到的,且A′、F′两点始终在直线AC上,
∴点E′在过点E(0,3)且与直线AC平行的直线l上移动.
∵直线AC的解析式是y=class="stub"3
4
x,
∴直线L的解析式是y=class="stub"3
4
x+3.
设点E′为(x,y),
∵点E′到x轴的距离与到y轴的距离比是5:4,
∴|y|:|x|=5:4.
①当x、y为同号时,得
y=class="stub"5
4
x
y=class="stub"3
4
x+3
解得
x=6
y=7.5

∴E′(6,class="stub"15
2
);
②当x、y为异号时,得
y=-class="stub"5
4
x
y=class="stub"3
4
x+3
解得
x=-class="stub"3
2
y=class="stub"15
8

∴E′(-class="stub"3
2
class="stub"15
8
).
∴存在满足条件的E′坐标分别是(6,class="stub"15
2
)、(-class="stub"3
2
class="stub"15
8
).

更多内容推荐