一条公路弯道处是一段圆弧,点O是这条弧所在圆的圆心,点C是的中点,OC与AB相交于点D。已知AB=120m,CD=20m,那么这段弯道的半径为()-九年级数学

题目简介

一条公路弯道处是一段圆弧,点O是这条弧所在圆的圆心,点C是的中点,OC与AB相交于点D。已知AB=120m,CD=20m,那么这段弯道的半径为()-九年级数学

题目详情

一条公路弯道处是一段圆弧,点O是这条弧所在圆的圆心,点C是的中点,OC与AB相交于点D。已知AB=120m,CD=20m,那么这段弯道的半径为(   )
题型:单选题难度:中档来源:不详

答案

C
分析:连接OA,由垂径定理求出AD的长,判断出△AOD的形状,在设OA=r,利用勾股定理即可得出r的长.
解答:解:连接OA,

∵C是的中点,OC与AB相交于点D,
∴AB⊥OC,
∴AD=AB=×120
=60m,
∴△AOD是直角三角形,
设OA=r,则OD=r-CD=OC-CD=r-20,
在Rt△AOD中,
OA2=AD2+OD2,即r2=602+(r-20)2,解得r=100m.
故选C.

更多内容推荐