优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 如图1,Rt△ABC两直角边的边长为AC=1,BC=2.(1)如图2,⊙O与Rt△ABC的边AB相切于点X,与边CB相切于点Y.请你在图2中作出并标明⊙O的圆心O;(用尺规作图,保留作图痕迹,不写作法
如图1,Rt△ABC两直角边的边长为AC=1,BC=2.(1)如图2,⊙O与Rt△ABC的边AB相切于点X,与边CB相切于点Y.请你在图2中作出并标明⊙O的圆心O;(用尺规作图,保留作图痕迹,不写作法
题目简介
如图1,Rt△ABC两直角边的边长为AC=1,BC=2.(1)如图2,⊙O与Rt△ABC的边AB相切于点X,与边CB相切于点Y.请你在图2中作出并标明⊙O的圆心O;(用尺规作图,保留作图痕迹,不写作法
题目详情
如图1,Rt△ABC两直角边的边长为AC=1,BC=2.
(1)如图2,
⊙O与Rt△ABC的边AB相切于点X,与边CB相切于点Y.请你在图2中作出并标明⊙O的圆心O;(用尺规作图,保留作图痕迹,不写作法和证明)
(2)P是这个Rt△ABC上和其内部的动点,以P为圆心的⊙P与Rt△ABC的两条边相切.设⊙P的面积为s,你认为能否确定s的最大值?若能,请你
求出s的最大值;若不能,请你说明不能确定s的最大值的理由.
题型:解答题
难度:偏易
来源:不详
答案
解:(1)共2分.(标出了圆心,没有作图痕迹的评1分)看见垂足为Y(X)的一 条 垂 线 (或 者∠ABC的平分线)即评1分,
(2)①当⊙P与Rt△ABC的边 AB和BC相切时,由角平分线的性质,动点P是∠ABC的平分线BM上的点.
如图1,在∠ABC的平分线BM上任意确定点P1 (不为∠ABC的顶点),
∵ OX =BOsin∠ABM, P1Z=BP1sin∠ABM.
当 BP1>BO 时 ,P1Z>OX,即P与B的距离越大,⊙P的面积越大.
这时,BM与AC的交点P是符合题意的、BP长度最大的点.
(3分.此处没有证明和结论不影响后续评分)
如图2,∵∠BPA>90°,过点P作PE⊥AB,垂足为E,则E在边AB上.
∴以P为圆心、PC为半径作圆,则⊙P与边CB相切于C,与边AB相切于E,
即这时的⊙P是符合题意的圆.(4分.此处没有证明和结
论不影响后续评分)
这时⊙P的面积就是S的最大值.
∵∠A=∠A,∠BCA=∠AEP=90°,∴ Rt△ABC∽Rt△APE, (5分)
∴
.
∵AC=1,BC=2,∴AB=
.
设PC=x,则PA=AC-PC=1-x, PC=PE,
∴
, ∴x=
. (6分)
②如图3,同理可得:当⊙P与Rt△ABC的边AB和AC相切时,设PC=y,则
,
∴y=
. (7分)
③如图4,同理可得:当⊙P与Rt△ABC的边BC和AC相切时,
设PF=z,则
, ∴z=
. (8分)
由①,②,③可知:∵
>2,∴
+2>
+1>3,
∵当分子、分母都为正数时,若分子相同,则分母越小,这个分数越大,
(或者:∵x=
=2
-4, y=
=
5,
∴y-x=
>0, ∴y>x. ∵z-y=
>0)
∴
2, (9分,没有过程直接得出酌情扣1分)
∴ z>y>x. ∴⊙P的面积S的最大值为
. (10分)
略
上一篇 :
(11·钦州)已知⊙O1和⊙O2的半径
下一篇 :
如图,某商标是由边长均为2的正
搜索答案
更多内容推荐
(11·贺州)已知一个正多边形的一个内角是120º,则这个多边形的边数是_▲.-九年级数学
(11·西宁)如图8,在6×6的方格纸中(共有36个小方格),每个小方格都是边长为1的正方形,将线段OA绕点O逆时针旋转得到线段OB(顶点均在格点上),则阴影部分面积等于_▲.-九年级数学
如图,内接于,若,则的大小为()A.B.C.D.-九年级数学
(本题满分10分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.(1)若AC=6,AB=10,求⊙O的半径;(2)连接OE、ED
若⊙O1、⊙O2的半径分别为4和6,圆心距O1O2=8,则⊙O1与⊙O2的位置关系是A.内切B.相交C.外切D.外离-九年级数学
如图,点D为AC上一点,点O为边AB上一点,AD=DO.以O为圆心,OD长为半径作圆,交AC于另一点E,交AB于点F,G,连接EF.若∠BAC=22°,则∠EFG=_▲.-九年级数学
(2011•毕节地区)如图,在△ABC中,AB=AC=10,CB=16,分别以AB、AC为直径作半圆,则图中阴影部分面积是()A、50π﹣48B、25π﹣48C、50π﹣24D、-九年级数学
(2007•连云港)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.2cmB.cmC.D.-九年级数学
(11·西宁)已知⊙O1、⊙O2的半径分别是r1=2、r2=4,若两圆相交,则圆心距O1O2可能取的值是A.1B.2C.4D.6-九年级数学
(2011广西梧州,25,10分)如图,AB是⊙O的直径,CD是⊙O的切线,切点为C.延长AB交CD于点E.连接AC,作∠DAC=∠ACD,作AF⊥ED于点F,交⊙O于点G.(1)求证:AD是⊙O的切
(本题满分10分)已知AB为⊙O直径,以OA为直径作⊙M。过B作⊙M得切线BC,切点为C,交⊙O于E。(1)在图中过点B作⊙M作另一条切线BD,切点为点D(用尺规作图,保留作图痕迹,不写作法,-九年级
五边形的外角和等于A.180°B.360°C.540°D.720°-九年级数学
(本小题满分9分)已知⊙与⊙相交于、两点,点在⊙上,为⊙上一点(不与,,重合),直线与⊙交于另一点。(1)如图(8),若是⊙的直径,求证:;(2)如图(9),若是⊙外一点,求证:;(3)如图-九年级数
(2011•海南)如图,在以AB为直径的半圆O中,C是它的中点,若AC=2,则△ABC的面积是()A.1.5B.2C.3D.4-九年级数学
(11·曲靖)(10分)如图,点A、B、C、D都在⊙O上,OC⊥AB,∠ADC=30°。(1)求∠BOC的度数;(2)求证:四边形AOBC是菱形。-九年级数学
将一个圆心角是90º的扇形围成一个圆锥的侧面,则该圆锥的侧面积S侧和底面积S底的关系是【】A.S侧=S底B.S侧=2S底C.S侧=3S底D.S侧=4S底-九年级数学
如图1,在第一象限内,直线y=mx与过点B(0,1)且平行于x轴的直线l相交于点A,半径为r的⊙Q与直线y=mx、x轴分别相切于点T、E,且与直线l分别交于不同的M、N两点.(1)当点A的坐标-九年级
若⊙O1的半径为3,⊙O2的半径为1,且O1O2=4,则⊙O1与⊙O2的位置关系是()A.内含B.内切C.相交D.外切-九年级数学
(11·西宁)(本小题满分10分)已知:如图,BD为⊙O的直径,AB=AC,AD交BC与E,AE=2,ED=4.(1)求证:△ABE∽△ADB;(2)求AB的长;(3)延长DB到F,使BF=OB,连接
(本题满分8分)如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上的任意一点(不与点A、B重合),连接CO并延长CO交于⊙O于点D,连接AD.(1)弦长AB等于▲(结果保留根号);(2)当
(2011•泰安)一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是()A.5πB.4πC.3πD.2π-九年级数学
(2011•桂林)如图,在锐角△ABC中,AC是最短边;以AC中点O为圆心,AC长为半径作⊙O,交BC于E,过O作OD∥BC交⊙O于D,连接AE、AD、DC.(1)求证:D是的中点;(2)求证:∠DA
如图,⊙O的直径AB与弦CD(不是直径)相交于点E,且CE=DE,过点B作CD得平行线AD延长线于点F.(1)求证:BF是⊙O的切线;(2)连接BC,若⊙O的半径为4,sin∠BCD=,求CD的长?-
若用半径为12,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥底面圆的半径的长__________。-九年级数学
如图(5),△内接于⊙,若=30°,,则⊙的直径为.-九年级数学
如图,梯形ABCD内接于⊙O,AD∥BC,,则的度数为.-九年级数学
如图,在正方形ABCD内有一折线段,其中AE⊥EF,EF⊥FC,并且AE=6,EF=8,FC=10,则正方形与其外接圆之间形成的阴影部分的面积为________。-九年级数学
(11·兵团维吾尔)(8分)如图,在Rt△ABC中,AB=3,BC=4,圆心O在AC上,⊙O与BC相切于点D,求⊙O的半径.-九年级数学
(本小题满分8分)如图,已知在⊙O中,AB=4,AC是⊙O的直径,AC⊥BD于F,∠A=30°.(1)求图中阴影部分的面积;(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.(-
(2011贵州六盘水,23,14分)如图8,已知:△ABC是⊙O的内接三角形,D是OA延长线上的一点,连接DC,且∠B=∠D=300。(1)判断直线CD与⊙O的位置关系,并说明理由。(2)若AC=6,
(2011•南充)在圆柱形油槽内装有一些油.截面如图,油面宽AB为6分米,如果再注入一些油后,油面AB上升1分米,油面宽变为8分米,圆柱形油槽直径MN为()A.6分米B.8分米C.10分米D.-九年级
(2011贵州六盘水,4,3分)已知两圆的半径分别为1和2,圆心距为5,那么这两个圆的位置关系是()A.内切B.相交C.外离D.外切-九年级数学
(2011•泰安)如图,⊙O的弦AB垂直平分半径OC,若AB=,则⊙O的半径为()A、B、C、D、-九年级数学
将一个半径为6㎝,母线长为15㎝的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是度.-九年级数学
-九年级数学
已知圆柱的底面半径为1,母线长为2,则圆柱的侧面积为()A.2B.4C.2πD.4π-九年级数学
(11·佛山)如图,已知AB是⊙O的弦,半径OA=20cm,∠AOB=120°,求△AOB的面积;-九年级数学
-九年级数学
(8分)如图,AM切⊙O于点A,BD⊥AM于点D,BD交⊙O于点C,OC平分∠AOB.求∠B的度数.-九年级数学
(2011•攀枝花)用半径为9cm,圆心角为120°的扇形纸片围成一个圆锥,则该圆锥的高为cm.-九年级数学
(2011•攀枝花)如图,已知⊙O的半径为1,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,OM=,则sin∠CBD的值等于()A.B.C.D.-九年级数学
如图,将一个半径为3,圆心角为60o的扇形AOB,如图放置在直线l上(OA与直线l重合),然后将这个扇形在直线l上无摩擦滚动至O’A’B’的位置,在这个过程中,点O运动到点O’的路-九年级数学
如图3,四边形ABCD是O的内接四边形,∠DCE=,则∠BAD=______________.-九年级数学
(2011山东济南,12,3分)如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为上一点(不与O、A两点重合),则cosC的值为()A.B.C.D.-九年级数
(2011•德州)●观察计算当a=5,b=3时,与的大小关系是>.当a=4,b=4时,与的大小关系是=.●探究证明如图所示,△ABC为圆O的内接三角形,AB为直径,过C作CD⊥AB于D,设AD=a,B
(2011?德州)母线长为2,底面圆的半径为1的圆锥的侧面积为.-九年级数学
如图,A、B、C、D是⊙O上的四个点,AB=AC,AD交BC于点E,AE=3,ED=4,则AB的长为()A3B2CD3-九年级数学
(2011•潍坊)如图,AB是半径O的直径,AB=2.射线AM、BN为半圆O的切线.在AM上取一点D,连接BD交半圆于点C,连接AC.过O点作BC的垂线OE,垂足为点E,与BN相交于点F.过D点作半圆
.如图,点A、B在⊙O上,直线AC是⊙O的切线,OD⊥OB,连接AB交OC于点D.⑴求证:AC=CD⑵若AC=2,AO=,求OD的长度.-九年级数学
如图,三个半圆依次相外切,它们的圆心都在x轴上,并与直线y=x相切.设三个半圆的半径依次为r1、r2、r3,则当r1=1时,r3=.-九年级数学
返回顶部
题目简介
如图1,Rt△ABC两直角边的边长为AC=1,BC=2.(1)如图2,⊙O与Rt△ABC的边AB相切于点X,与边CB相切于点Y.请你在图2中作出并标明⊙O的圆心O;(用尺规作图,保留作图痕迹,不写作法
题目详情
(1)如图2,
(2)P是这个Rt△ABC上和其内部的动点,以P为圆心的⊙P与Rt△ABC的两条边相切.设⊙P的面积为s,你认为能否确定s的最大值?若能,请你
答案
(2)①当⊙P与Rt△ABC的边 AB和BC相切时,由角平分线的性质,动点P是∠ABC的平分线BM上的点.
如图1,在∠ABC的平分线BM上任意确定点P1 (不为∠ABC的顶点),
∵ OX =BOsin∠ABM, P1Z=BP1sin∠ABM.
当 BP1>BO 时 ,P1Z>OX,即P与B的距离越大,⊙P的面积越大.
这时,BM与AC的交点P是符合题意的、BP长度最大的点.
(3分.此处没有证明和结论不影响后续评分)
如图2,∵∠BPA>90°,过点P作PE⊥AB,垂足为E,则E在边AB上.
∴以P为圆心、PC为半径作圆,则⊙P与边CB相切于C,与边AB相切于E,
即这时的⊙P是符合题意的圆.(4分.此处没有证明和结
这时⊙P的面积就是S的最大值.
∵∠A=∠A,∠BCA=∠AEP=90°,∴ Rt△ABC∽Rt△APE, (5分)
∴
∵AC=1,BC=2,∴AB=
设PC=x,则PA=AC-PC=1-x, PC=PE,
∴
②如图3,同理可得:当⊙P与Rt△ABC的边AB和AC相切时,设PC=y,则
∴y=
③如图4,同理可得:当⊙P与Rt△ABC的边BC和AC相切时,
设PF=z,则
由①,②,③可知:∵
∵当分子、分母都为正数时,若分子相同,则分母越小,这个分数越大,
(或者:∵x=
∴y-x=
∴
∴ z>y>x. ∴⊙P的面积S的最大值为