某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1-ABCD,上不是一个底面与四棱台的上底面重合,侧面是全等的矩形的-高三数学

题目简介

某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1-ABCD,上不是一个底面与四棱台的上底面重合,侧面是全等的矩形的-高三数学

题目详情

某个实心零部件的形状是如图所示的几何体,其下部是底面均是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1-ABCD,上不是一个底面与四棱台的上底面重合,侧面是全等的矩形的四棱柱ABCD-A2B2C2D2
(1)证明:直线B1D1⊥平面ACC2A2
(2)现需要对该零部件表面进行防腐处理,已知AB=10,A1B1=20,AA2=30,AA1=13(单位:厘米),每平方厘米的加工处理费为0.20元,需加工处理费多少元?
题型:解答题难度:中档来源:高考真题

答案

解:(1)∵四棱柱ABCD-A2B2C2D2的侧面是全等的矩形,
∴AA2⊥AB,AA2⊥AD,
又AB∩AD=A,
∴AA2⊥平面ABCD
连接BD,
∵BD?平面ABCD,
∴AA2⊥BD,
又底面ABCD是正方形,
∴AC⊥BD,
根据棱台的定义可知,BD与B1D1共面,
又平面ABCD∥平面A1B1C1D1,且平面BB1D1D∩平面ABCD=BD,平面BB1D1D∩平面A1B1C1D1=B1D1,
∴B1D1∥BD,
于是由AA2⊥BD,AC⊥BD,B1D1∥BD,可得AA2⊥B1D1,AC⊥B1D1,
又AA2∩AC=A,
∴B1D1⊥平面ACC2A2;
(2)∵四棱柱ABCD-A2B2C2D2的底面是正方形,侧面是全等的矩形,
∴S1=S四棱柱上底面+S四棱柱侧面= +4AB?AA2=102+4×10×30 =1300(cm2)
又∵四棱台A1B1C1D1-ABCD上下底面均是正方形,侧面是全等的等腰梯形,
∴S2=S四棱柱下底面+S四棱台侧面= +4× (AB+A1B1)?h等腰梯形的高
=202+4× (10+20)?  =1120(cm2),
于是该实心零部件的表面积S=S1+S2=1300+1120=2420(cm2),
故所需加工处理费0.2S=0.2×2420=484元。

更多内容推荐