如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.-高二数

题目简介

如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.-高二数

题目详情

如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:
(1)平面EFG平面ABC;
(2)BC⊥SA.
题型:解答题难度:中档来源:不详

答案

(1)∵△ASB中,SA=AB且AF⊥SB,∴F为SB的中点.
∵E、G分别为SA、SC的中点,
∴EF、EG分别是△SAB、△SAC的中位线,可得EFAB且EGAC.
∵EF⊄平面ABC,AB⊂平面ABC,
∴EF平面ABC,同理可得EG平面ABC
又∵EF、EG是平面EFG内的相交直线,
∴平面EFG平面ABC;
(2)∵平面SAB⊥平面SBC,平面SAB∩平面SBC=SB,
AF⊂平面ASB,AF⊥SB.
∴AF⊥平面SBC.
又∵BC⊂平面SBC,∴AF⊥BC.
∵AB⊥BC,AF∩AB=A,∴BC⊥平面SAB.
又∵SA⊂平面SAB,∴BC⊥SA.

更多内容推荐