如图,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且AB=BC=CA=3,AD=CD=1.(1)求证:BD⊥AA1;(2)在棱BC上取一点E,使得AE∥平面DCC1D1,

题目简介

如图,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且AB=BC=CA=3,AD=CD=1.(1)求证:BD⊥AA1;(2)在棱BC上取一点E,使得AE∥平面DCC1D1,

题目详情

如图,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且AB=BC=CA=
3
,AD=CD=1.
(1)求证:BD⊥AA1
(2)在棱BC上取一点E,使得AE平面DCC1D1,求
BE
EC
的值.
题型:解答题难度:中档来源:不详

答案

(1)证明:在四边形ABCD中,因为BA=BC,DA=DC,所以BD⊥AC.
因为平面AA1C1C⊥平面ABCD,且平面AA1C1C∩平面ABCD=AC,BD⊂平面ABCD,
所以BD⊥平面AA1C1C,
因为AA1⊂平面AA1C1C,
所以BD⊥AA1;
(2)点E为BC中点,即class="stub"BE
EC
=1,
下面给予证明:在三角形ABC中,因为AB=AC,E为BC中点,所以AE⊥BC,
又在四边形ABCD中,AB=BC=CA=
3
,DA=DC=1,所以∠ACB=60°,∠ACD=30°,
所以DC⊥BC,即平面ABCD中有,AEDC.
因为DC⊂平面DCC1D1,AE⊄平面DCC1D1,
所以AE平面DCC1D1.

更多内容推荐