已知:正方体ABCD-A1B1C1D1,AA1=2,E为棱CC1的中点.(1)求证:B1D1⊥AE;(2)求证:AC∥平面B1DE;(3)(文)求三棱锥A-BDE的体积.(理)求三棱锥A-B1DE的体

题目简介

已知:正方体ABCD-A1B1C1D1,AA1=2,E为棱CC1的中点.(1)求证:B1D1⊥AE;(2)求证:AC∥平面B1DE;(3)(文)求三棱锥A-BDE的体积.(理)求三棱锥A-B1DE的体

题目详情

已知:正方体ABCD-A1B1C1D1,AA1=2,E为棱CC1的中点.
(1)求证:B1D1⊥AE;
(2)求证:AC平面B1DE;
(3)(文)求三棱锥A-BDE的体积.
(理)求三棱锥A-B1DE的体积.
题型:解答题难度:中档来源:不详

答案

(1)证明:连接BD,则BDB1D1,(1分)
∵ABCD是正方形,∴AC⊥BD.∵CE⊥面ABCD,∴CE⊥BD.
又AC∩CE=C,∴BD⊥面ACE.(4分)
∵AE⊂面ACE,∴BD⊥AE,
∴B1D1⊥AE.(5分)

(2)证明:作BB1的中点F,连接AF、CF、EF.
∵E、F是CC1、BB1的中点,∴CE
.
B1F,
∴四边形B1FCE是平行四边形,
∴CFB1E.(7分)
∵E,F是CC1、BB1的中点,∴EF
.
.
BC

BC
.
.
AD
,∴EF
.
.
AD

∴四边形ADEF是平行四边形,∴AFED,
∵AF∩CF=F,B1E∩ED=E,
∴平面ACF面B1DE.(9分)
又AC⊂平面ACF,∴AC面B1DE.(10分)

(3)(文)S△ABD=class="stub"1
2
AB•AD=2
. (11分)
VA-BDE=VE-ABD=class="stub"1
3
S△ABD•CE=class="stub"1
3
S△ABD•CE=class="stub"2
3
.(14分)
(理)∵AC面B1DE
∴A 到面B1DE 的距离=C到面B1DE 的距离(11分)
VA-B1DE=VC-B1DE=VD-B1EC=class="stub"1
3
•(class="stub"1
2
•1•2)•2=class="stub"2
3
(14分)

更多内容推荐