如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC与BD的交点,BB1=2,M是线段B1D1的中点.(1)求证:BM∥平面D1AC;(2)求三棱锥D1-AB1C的体

题目简介

如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC与BD的交点,BB1=2,M是线段B1D1的中点.(1)求证:BM∥平面D1AC;(2)求三棱锥D1-AB1C的体

题目详情

如图所示的长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,O为AC与BD的交点,BB1=
2
,M是线段B1D1的中点.
(1)求证:BM平面D1AC;
(2)求三棱锥D1-AB1C的体积.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)连接D1O,如图,
∵O、M分别是BD、B1D1的中点,BD1D1B是矩形,
∴四边形D1OBM是平行四边形,
∴D1OBM.(2分)
∵D1O⊂平面D1AC,BM⊄平面D1AC,∴BM平面D1AC.(4分)

(Ⅱ)连接OB1,∵正方形ABCD的边长为2,BB1=
2

B1D1=2
2
,OB1=2,D1O=2,
则OB12+D1O2=B1D12,∴OB1⊥D1O.(6分)
又∵在长方体ABCD-A1B1C1D1中,AC⊥BD,AC⊥D1D,且BD∩D1D=D,
∴AC⊥平面BDD1B1,又D1O⊂平面BDD1B1,
∴AC⊥D1O,又AC∩OB1=O,(10分)
∴D1O⊥平面AB1C,即D1O为三棱锥D1-AB1C的高.(12分)
S△AB1C=class="stub"1
2
•AC•OB1=class="stub"1
2
×2
2
×2=2
2
,D1O=2
VD1-AB1C=class="stub"1
3
S△AB1CD1O=class="stub"1
3
×2
2
×2=class="stub"4
3
2
.14(5分)

更多内容推荐