设f(α)=2sinαcosα+cosα1+sin2α+cos(3π2+α)-sin2(π2+α)(1+2sinα≠0).(1)化简f(α).(2)求f(1°)•f(2°)•f(3°)•…•f(89°

题目简介

设f(α)=2sinαcosα+cosα1+sin2α+cos(3π2+α)-sin2(π2+α)(1+2sinα≠0).(1)化简f(α).(2)求f(1°)•f(2°)•f(3°)•…•f(89°

题目详情

f(α)=
2sinαcosα+cosα
1+sin2α+cos(
2
+α)-sin2(
π
2
+α)
(1+2sinα≠0)

(1)化简f(α).
(2)求f(1°)•f(2°)•f(3°)•…•f(89°)的值.
题型:解答题难度:中档来源:不详

答案

(1)∵cos(class="stub"3π
2
+α)=sinα
sin2(class="stub"π
2
+α)=cos2α

f(α)=
cosα(2sinα+1)
1+sin2α+sinα-cos2α
=
cosα(2sinα+1)
2sin2α+sinα
=
cosα(2sinα+1)
sinα(2sinα+1)
=class="stub"cosα
sinα

(2)f(1°)•f(2°)•f(3°)••f(89°)
=
cos1°
sin1°
cos2°
sin2°
••
cos45°
sin45°
••
cos88°
sin88°
cos89°
sin89°

=(
cos1°
sin1°
cos89°
sin89°
)•(
cos2°
sin2°
cos88°
sin88°
)••
cos45°
sin45°

=(
cos1°
sin1°
sin1°
cos1°
)•(
cos2°
sin2°
sin2°
cos2°
)••
cos45°
sin45°
=1

更多内容推荐